آرشیو

آرشیو شماره ها:
۱۲۱

چکیده

استخراج کلیدواژه یکی از مهمترین قدم های فرآیند نمایه سازی مستندات است. کلیدواژه ها توصیفگرهای مفهومی هستند که می توانند در جستجو و بازیابی اطلاعات و نیز اشاعه آنها بکارگرفته شوند. در پایگاه های دربردارنده اسناد علمی مانند پایگاه علمی گنج پژوهشگاه علوم و فناوری اطلاعات ایران، کلیدواژه ها نقش مهمتری دارند و تخصیص کلیدواژه های تخصصی چالش برانگیزتر است چرا که این پایگاه ها دربرگیرنده اسناد تخصصی با حوزه های علمی مختلفی هستند. فرآیند نمایه-سازی دستی بسیار زمان بر است و با توجه به افزایش حجم تولید و ثبت مستندات علمی، نیاز است که این فرایند با سرعت بیشتری صورت گیرد. لذا استفاده از روش های ماشینی هوشمند برای پیشنهاد و تخصیص کلیدواژه ضروری است. تحلیل آماری و معنایی اسناد و استفاده از روش های یادگیری ماشین از جمله روش های پرکاربرد در بسیاری از پایگاه های اطلاعات علمی دنیا است. بر همین اساس، در این پژوهش روشی برای پیشنهاد کلیدواژه به مستندات علمی فارسی بر مبنای روش های هوشمند پردازش متن و یادگیری ماشین ارائه شده است. این روش بر مبنای سیستم های پیشنهاددهنده و استدلال نمونه محور است که براساس آن، مجموعه ای از کلیدواژه های مرتبط با یک سند به نمایه ساز پیشنهاد می شود تا او سریعتر بتواند کلیدواژه های مناسب را انتخاب کند. به بیانی دیگر، ابتدا اسناد مشابه با سند جدید براساس روش های TFIDFو روش های بازنمایی کلمه-به-بردار، بازیابی شده و سپس کلیدواژه های کاندید از بین اسناد مشابه براساس یک تابع رتبه بندی انتخاب می شوند. روش پیشنهادی بر مجموعه ای از اسناد پایگاه گنج در سه حوزه فنی و مهندسی، هنر و ادبیات، و علوم انسانی، پیاده سازی و نتایج آن با معیارهایی نظیر دقت، فراخوانی و نظرات متخصصین ارزیابی شده است.

A Case-Based Recommender System for Persian Scientific Document Indexing

Keyword extraction is a key step in document indexing. Keywords are semantic and content-based descriptors of a document, which can be used in document retrieval and representation. In databases containing scientific documents, such as Ganj in Irannian Research Institue for Information Science and Technology (IranDoc), it is even more critical to assign meaningful keywords for documents, since the documents are from different academic disciplines and contain technical terms.As the number of scientific documents grows exponentially, having an automatic and intelligent keyword extraction technique is getting more critical. There are various keyword extraction techniques that are either based on statistical features of the text or machine learning approaches, and sometimes a combination of both. In this research, we propose a new keyword extraction method for Persian scientific documents based on recommender systems and case-based reasoning. The proposed method is designed based on case-based reasoning in which the main assumption is that similar documents share similar keywords. There are two main steps in the proposed approach: first, similar documents to a given new document are retrieved based on TFIDF and word2vec model, second, the candidate keywords are extracted from retrieved documents and ranked based on a new scoring scheme, and a set of keyword are selected from the candidate keywords based on their score. The proposed method is tested and avaluated on a set of documents of Ganj database in three different subject areas (Art, Humanities and Engineering), based on precision, recall and expert panel

تبلیغات