بهینه سازی دسترس پذیری – افزونگی در چندین سیستم سری – موازی چند حالته به صورت توام با در نظر گرفتن خرابی های چند مرحله ای و امکان انتخاب تامین کننده (مقاله علمی وزارت علوم)
درجه علمی: نشریه علمی (وزارت علوم)
آرشیو
چکیده
مقدمه و اهداف: با توجه به رقابتی شدن بازار و جهانی شدن آن نیاز به دسترس پذیری در طراحی محصول در دهه های اخیر موردتوجه قرارگرفته است. امروزه دسترس پذیری شامل نیازمندی های عملکردی، استفاده از استانداردها، طراحی، پیش بینی دسترس پذیری، مدل سازی دسترس پذیری و بازیابی و بررسی آن است. یکی از اهداف دسترس پذیری، طراحی سیستم هایی با حداکثر دسترس پذیری است. دسترس پذیری یک سیستم معمولاً به واسطه بهبود دسترس پذیری هر یک از اجزاء یا تخصیص اجزای مازاد بهبود می یابد. این بهبودها در عمل به واسطه استفاده از مواد بهتر، فرآیند ساخت بهتر، اصول طراحی استفاده شده و غیره ایجاد می شود. روش ها: در این پژوهش، یک رویکرد نوآورانه برای بهینه سازی چندین سیستم سری موازی چندحالته بررسی می شود. این رویکرد به جای محدود کردن بهینه سازی به یک سیستم به صورت جداگانه، به بهینه سازی هم زمان چندین سیستم و بهبود کارایی و عملکرد کلی آن ها می پردازد. در این سیستم ها، تعدادی زیرسیستم موازی قرار دارند که هر یک از این زیرسیستم ها دارای اجزای چندحالته است. این اجزا می توانند در حالت های مختلف عمل کنند و با ترکیب این حالت ها، عملکرد متفاوتی را ارائه دهند. یکی از نکات مهم موردتوجه در این مدل، تأثیر نرخ های خرابی چندمرحله ای بر سیستم ها است که از طریق ترسیم نمودار حالت به وضوح بررسی می شود. فرضیه های مختلفی در این مدل در نظر گرفته می شود؛ از جمله قابلیت انتخاب تأمین کننده با شرایط متفاوت، با در نظر گرفتن محدودیت های موجود در سیستم. علاوه بر این، اثرات فعالیت های فنی و سازمانی بر روی بازه های پیوسته بهینه سازی سیستم ها نیز بررسی و تحلیل می شود. در پایان با استفاده از الگوریتم فراابتکاری ژنتیک، مدل ارائه شده بهبود می یابد و نتایج حاصل از آن نشان می دهد که عملکرد سیستم به طور کامل بهبود یافته است. یافته ها: در این پژوهش یک مدل بهینه سازی ریاضی برای مدل سازی مسئله موردبررسی تحت مفروضات مطرح شده ارائه می شود؛ همچنین برای نمونه یک نوع مثال عددی در شرایطی که تابع توزیع انتقال حالت نمایی و فعالیت های فنی و سازمانی با شدت عملکرد مختلف هستند، ارائه می شود. در این نمونه، فرض می شود که نرخ عملکردی هر زیرسیستم با مجموع نرخ عملکردی اجزا آن و عملکرد سیستم با حداقل نرخ عملکردی زیرسیستم ها برابر است. می توان با توجه به توضیحات داده شده احتمال دسترس پذیری سیستم را محاسبه و هزینه سیستم را نیز می توان با استفاده از تابع هدف مدل محاسبه کرد. در مرحله بعد با استفاده از الگوریتم ژنتیک، مثال های ارائه شده حل و نتایج آن گزارش می شود.نتیجه گیری: با مطالعه مقاله ها و پژوهش های سال های اخیر می توان دریافت که همواره پژوهشگران عرصه مدل های تخصیص افزونگی، چه در زمینه سیستم های باینری و چه سیستم های چندحالته، کوشیده اند تا با در نظر گرفتن فرضیه های جدید و یا حذف کردن فرضیه های ساده سازی که از سال های گذشته در مبانی نظری این مدل ها باقی مانده بود، شرایط این نوع مسائل را به دنیای واقعی نزدیک تر کنند و به سؤال های بیشتری که ذهن تصمیم گیرندگان چنین سیستم هایی را در امر بهینه سازی مشغول کرده بود، پاسخ دهند. این رویکردها از سوی پژوهشگران به نام این موضوع اهمیت و ضرورت ارائه مدل های بهینه سازی ریاضی با در نظر گرفتن همه شرایط و محدودیت های سیستمی کاربران و مدیران را بیش ازپیش مهم تر کرده است. در این پژوهش نیز نشان داده شده است که می توان با افزایش ابعاد بهینه سازی مسائل تخصیص افزونگی، مدل هایی را تنظیم کرد که با دنیای واقعی انطباق بیشتری دارند.Optimization of Availability-Redundancy in Multiple Multi-State Parallel-Series Systems Considering Multi-Stage Failures and Supplier Selection
Introduction: Given the competitive and globalized nature of markets, availability has become a crucial aspect of product design in recent decades. Modern availability includes functional requirements, adherence to standards, design considerations, predictability of availability, modeling, and evaluation. One objective of availability is to design systems with maximum accessibility. System availability is often improved by enhancing the availability of individual components or by allocating redundant components. These improvements are achieved through better materials, improved manufacturing processes, and the application of design principles. Method: This paper introduces an innovative approach to optimizing multiple parallel-series multi-state systems. Unlike traditional methods that focus on optimizing a single system, this approach simultaneously optimizes multiple systems to enhance their overall efficiency and performance. These systems contain parallel subsystems with multi-state components that can operate in various states, providing different performance outcomes. A significant aspect of this model is the impact of multi-stage failure rates on the systems, analyzed through state diagrams. The model also considers various assumptions, including the capability to select suppliers with different conditions and constraints. Additionally, the effects of technical and organizational activities on continuous optimization intervals are analyzed. The model is refined using a genetic algorithm, showing considerable improvements in system performance.Results and discussion: An optimization mathematical model is presented to address the problem under specified assumptions. A numerical example is provided where the state transition distribution function is exponential, and technical and organizational activities have varying performance intensities. In this example, the performance rate of each subsystem equals the sum of the performance rates of its components, and the system's performance is at least as good as the minimum performance rate of its subsystems. Based on these assumptions, the system's availability probability and cost can be calculated using the model's objective function. The example problems are then solved using a genetic algorithm, and the results are reported. Conclusions: Recent research indicates that scholars in the field of redundancy allocation models for both binary and multi-state systems have continuously aimed to make these problems more realistic by incorporating new assumptions or eliminating simplifying ones. These efforts underscore the importance of developing mathematical optimization models that consider all system conditions and constraints, addressing the broader issues faced by decision-makers. Our research demonstrates that expanding the dimensions of optimization problems related to redundancy allocation can produce models that better reflect real-world conditions.