یک مبحث مهم در مدیریت زنجیره تأمین، پدیده اثر شلاقی است. این مهم بیانگر افزایش تغییرپذیری تقاضا طی حرکت در طول زنجیره می باشد. در این مقاله تأثیر چندین روش کلاسیک و هوشمند در فرایند پیشبینی تقاضای متلاطم، در وقوع پدیده اثر شلاقی بررسی میشود. نتیجه این تحقیق حاکی از آن است که شبکههای عصبی در مقایسه با روشهای معمول کلاسیک همچون روش هموارسازی نمایی با توجه به رفتار غیرخطی، نوسانی و حتی آشوبی تقاضای متلاطم، توان بیشتری در مدل سازی و پیشبینی این رفتار دارند. در انتهای مقاله به کمک یک مثال عددی، کاربرد بهرهگیری از شبکههای عصبی در پیشبینی تقاضای متلاطم، در کاهش موفقیت آمیز پدیده اثر شلاقی به تصویر در آمده است.