ترتیب بر اساس: جدیدترینپربازدیدترین
فیلترهای جستجو: فیلتری انتخاب نشده است.
نمایش ۱۶۱ تا ۱۸۰ مورد از کل ۲٬۸۹۲ مورد.
۱۶۱.

Information management systems in the systematization of indicators for assessing the effectiveness of investment processes in the securities market(مقاله علمی وزارت علوم)

کلیدواژه‌ها: indicators Investment Processes Securities Market Information Management Systems Stock Exchange Indices Efficient market hypothesis

حوزه‌های تخصصی:
تعداد بازدید : ۲۵۸ تعداد دانلود : ۲۰۹
The purpose of this study is to study the indicators for evaluating the effectiveness of the implementation of investment processes on the securities market, taking into account the scientific foundations of information management systems and analysis of indicators of financial efficiency of the investment function of the securities market in Ukraine. The relevance of this study is due to the growing importance of management information systems in all sectors of the Ukrainian economy, in particular, the provision of solutions to the problems of activating investment processes in the securities market of Ukraine by analyzing and reassessing the effectiveness of investment processes at this level, taking into account the scientific basis of management information systems.  A set of indicators that best reflect the implementation of the investment function of the Ukrainian securities market is proposed. A matrix of characteristics of investment processes in the securities market is proposed. It is argued why domestic and foreign investors prefer local securities market indices when making investment decisions. Through the implementation of correlation-regression models, it has been proven that, on average, 87% of changes in investments in securities are due to changes in the number of licensed entities, which on the Chedoch scale indicates a close relationship between the indicators. The results obtained using statistical inference methods indicate a high impact of both external macroeconomic factors that inhibit the development of the securities market and internal, which in turn is reflected in the indicators of assessing the effectiveness of investment processes in the securities market.
۱۶۲.

بررسی تاثیر رفتارهای پنهان کننده دانش بر سکوت کارکنان و رفتارهای منحرف سازمانی با نقش میانجی نقض قرارداد روانشناختی (نمونه پژوهش: اداره کل امور مالیاتی مودیان بزرگ)(مقاله علمی وزارت علوم)

کلیدواژه‌ها: رفتارهای پنهان کننده دانش سکوت کارکنان رفتارهای منحرف سازمانی

حوزه‌های تخصصی:
تعداد بازدید : ۱۸۳ تعداد دانلود : ۲۰۹
هدف از پژوهش حاضر، بررسی تاثیر رفتارهای پنهان کننده دانش بر سکوت کارکنان و رفتارهای منحرف سازمانی با نقش میانجی نقض قرارداد روانشناختی می باشد. این پژوهش از نظر نوع هدف، کاربردی و از نظر نوع ماهیت، توصیفی- پیمایشی است. جامعه آماری پژوهش حاضر، شامل کارکنان اداره امور مالیاتی مودیان بزرگ که مشتمل بر 400 نفر می باشند که تعداد 227 نفر به روش تصادفی ساده و به روش تحلیل توان به عنوان نمونه آماری انتخاب گردیدند. جهت گردآوری اطلاعات از پرسشنامه استاندارد استفاده شده است و داده ها بوسیله تحلیل چندمتغیره مبتنی بر مدل سازی معادلات ساختاری با رویکرد کواریانس محور در بستر نرم افزار Amos ورژن 24 مورد تجزیه و تحلیل قرار گرفت. نتایج تحقیق حاکی از تایید تاثیر پنهان کاری منطقی بر سکوت تدافعی، پنهان کاری گریزان بر سکوت رابطه ای، پنهان کاری منطقی بر سکوت رابطه ای، پنهان کاری گریزان بر سکوت بی اثر، پنهان کاری منطقی بر سکوت بی اثر و سکوت تدافعی بر رفتار منحرف سازمانی، سکوت رابطه ای بر رفتار منحرف سازمانی و سکوت بی اثر بر رفتار منحرف سازمانی می باشد و همچنین نتایج حاصل از تحلیل میانجی نشان می دهد که سازه "نقض قرارداد روانشناختی" برای تمامی روابط میان ابعاد پنهان کاری و ابعاد سکوت دارای نقش میانجی است، به طوری که فرآیند میانجی گری مذکور برای روابط علی میان "پنهان کاری خاموش" و "سکوت تدافعی/ سکوت بی اثر" به صورت کامل و برای مابقی روابط به صورت جزئی است. در نهایت، از میان بیست و یک فرضیه مطروحه، هفده فرضیه مورد تائید قرار گرفت که از این بین تاثیر سکوت رابطه ای بر رفتار منحرف سازمانی از بالاترین ضریب مسیر (0.33) برخوردار است.
۱۶۳.

بررسی نقش مدیریت ارتباط با مشتری در رابطه بین مدیریت دانش مشتری و توسعه محصول جدید (نمونه پژوهش: شرکتهای صنعتی فعال در بخش پلاستیک)(مقاله علمی وزارت علوم)

کلیدواژه‌ها: توسعه محصول جدید دانش مشتری مدیریت ارتباط با مشتری مدیریت دانش مشتری

حوزه‌های تخصصی:
تعداد بازدید : ۱۹۸ تعداد دانلود : ۲۰۴
در این پژوهش تلاش شده است تا تاثیر مدیریت ارتباط با مشتری (CRM) در رابطه بین مدیریت دانش مشتری (CKM) و توسعه محصول جدید (NPD) بررسی شود. این پژوهش از نظر هدف کاربردی و از نظر ماهیت توصیفی-پیمایشی است. جامعه آماری پژوهش شرکت های فعال استان خوزستان و آذربایجان غربی می باشد که از بین آن ها 169 شرکت به عنوان نمونه انتخاب شده اند. ابزار جمع آوری داده ها پرسشنامه استاندارد بوده است. در پرسشنامه مورد استفاده ابعاد متغیر مدیریت دانش مشتری شامل دانش درباره مشتری، از مشتری، و برای مشتری به ترتیب بر اساس مقیاس های بوچنوسکا (2011)، موسی خانی، حقیقت و ترک زاده (2012)، و شامی زنجانی و نجف لو (2011) سنجیده شده است. ابعاد متغیر مدیریت ارتباط با مشتری نیز شامل اطلاعات، ارزش، و ارتباطات چندکاناله به ترتیب بر اساس مقیاس های کوهلی و جاورسکی (1990)، جارویس، و همکاران (2003)، و جیندال، و همکاران (2007) سنجیده شده است. همچنین متغیر محصول جدید بر اساس مقیاس کوپر و کلین اشمیت (1995) سنجیده شده است. جهت تجزیه و تحلیل اطلاعات از روش حداقل مربعات جزئی و نرم افزار SmartPLS استفاده شده است. بررسی پایایی داده ها با استفاده از آزمون ضریب آلفای کرونباخ و پایایی مرکب نشان داد که کمترین مقدار آلفای کرونباخ مربوط به متغیر دانش از مشتری با مقدار 775/0 و کمترین مقدار پایایی مرکب مربوط به متغیر دانش از مشتری با مقدار 843/0شده است و از این رو پایایی همه متغیرهای آزمون مورد تایید قرار گرفته شد. بررسی نتایج پژوهش نشان داد که ضریب مسیر CKM-CRM و CKM-NPD به ترتیب دارای مقادیر 833/0 و 612/0، ضریب مسیر CRM-NPD دارای مقدار 774/0، و اثر میانجی CRM بر رابطه CKM-NPD مقدار 648/0 شده است که همه موارد درسطح خطای 5 درصد معنی دار است. این یافته ها چندین پیامد مهم علمی و عملی دارند و از این رو پیشنهاد می شود شرکت ها اهمیت مدیریت ارتباط با مشتری را در فعال سازی استعداد مدیریت دانش و توسعه محصول جدید مورد توجه ویژه قرار دهند.
۱۶۴.

Implementation of Intrusion detection and prevention with Deep Learning in Cloud Computing(مقاله علمی وزارت علوم)

کلیدواژه‌ها: IDPS (Intrusion Detection and Prevention System) Network Security

حوزه‌های تخصصی:
تعداد بازدید : ۲۸۵ تعداد دانلود : ۱۳۶
An administrator is employed to identify network security breaches in their organizations by using a Network Intrusion Detection and Prevention System (NIDPS), which is presented in this paper that can detect and preventing a wide range of well-known network attacks. It is now more important than ever to recognize different cyber-attacks and network abnormalities that build an effective intrusion detection system plays a crucial role in today's security. NSL-KDD benchmark data set is extensively used in literature, although it was created over a decade ago and will not reflect current network traffic and low-footprint attacks. Canadian Institute of Cyber security introduced a new data set, the CICIDS2017 network data set, which solved the NSL-KDD problem. With our approach, we can apply a variety of machine learning techniques like linear regression, Random Forest and ID3. The efficient IDPS is indeed implemented and tested in a network environment utilizing several machine learning methods. A model that simulates an IDS-IPS system by predicting whether a stream of network data is malicious or benign is our objective. An Enhanced ID3 is proposed in this study to identify abnormalities in network activity and classify them. For benchmark purposes, we also develop an auto encoder network, PCA, and K-Means Clustering. On CICIDS2017, a standard dataset for network intrusion, we apply Self-Taught Learning (STL), which is a deep learning approach. To compare, we looked at things like memory, Recall, Accuracy, and Precision.
۱۶۵.

Brain Computer Interface using Genetic Algorithm with modified Genome and Phenotype Structures(مقاله علمی وزارت علوم)

نویسنده:

کلیدواژه‌ها: Motor Imagery (M.I.) Genetic Algorithm (GA) Three Dimensional Population Support Vector Machine (SVM)

حوزه‌های تخصصی:
تعداد بازدید : ۲۷۰ تعداد دانلود : ۱۲۴
The human machine interface research in the light of modern fast computers and advanced sensors is taking new heights. The classification and processing of neural activity in the brain accessed by Magnetic Resonance Imaging (MRI), Positron Emission Tomography (PET), functional Magnetic Resonance Imaging (fMRI), Electrocorticography (ECoG), EEG Electroencephalogram (EEG) etc., are peeling off new paradigms for pattern recognition in human brain-machine interaction applications. In the present paper, an effective novel scheme based upon a synergetic approach employing the Genetic Algorithm (GA), Support Vector Machine and Wavelet packet transform for motor imagery classification and optimal Channel selection is proposed. GA with SVM acting as the objective function is employed for simultaneous selection of features and channels optimally. The binary population of GA is uniquely represented in three-dimensional structure and a new cross-over operator for GA are introduced. The new modified cross-over operator is proposed for the modified three-dimensional population. The ‘data set I’ of ‘BCI Competition IV’ is taken for evaluation of the efficacy of the proposed scheme. For subject ‘a’ accuracy is 88.9 6.9 with 10 channels, for subject ‘b’ accuracy is 79.20±5.36with 11 channels, for subject ‘f’ accuracy is 90.50±3.56 with 13 channels, and for subject ‘g’ accuracy is 92.23±3.21with 12 channels. The proposed scheme outperforms in terms of classification accuracy for subjects ‘a, b, f, g’ and in terms of number of channels for subject ‘a’ and that for subject ‘b’ is same as reported earlier in literature. Therefore, proposed scheme contributes a significant development in terms of new three-dimensional representation of binary population for GA as well as significant new modification to the GA operators. The efficacy of the scheme is evident from the results presented in the paper for dataset under consideration.
۱۶۶.

The Pandemic Benefits Reaped by Online Teaching Platforms: A Case study of Whitehat Junior(مقاله علمی وزارت علوم)

نویسنده:

کلیدواژه‌ها: pandemic Online Education teaching Platforms parents Perspectiv COVID -19

حوزه‌های تخصصی:
تعداد بازدید : ۱۸۵ تعداد دانلود : ۱۸۲
Pandemic has brought all together a new environment of working and compelled all the off line educational institutions to become online educational platforms and strengthen their online resources. We need to understand online platforms as universities, institutes, schools, colleges or any educational institute which are working online and providing degrees, certificates, diplomas for several courses and programs. In different researches related to online education and Covid -19, investigations addressed student’s perspective or teachers perspective. Literature review has showed the gap in exploring the turnaround strategies inspired by the parent’s perspective for online education especially with respect to young children (Age group 8 to 12 years). Apart from literature review and analysis of secondary data from websites and search engines, qualitative research was undertaken to know about parent’s views in general about the online platforms and particularly about WHJ (White Hat Junior). The focused group discussion and the indepth interviews revealed very useful information with regard to Online educational platforms and especially WHJ in relation to Covid -19 times. Findings relate to awareness, acceptability, perception change, costs, safety issues, etc. It has brought out elaborately in this case based research, how parents expectation may impact the turnaround strategies of their wards’ online educational platforms. In different researches related to online education and Covid -19, investigations addressed student’s perspective or teacher’s perspective.
۱۶۷.

Analysis of Diabetes disease using Machine Learning Techniques: A Review(مقاله علمی وزارت علوم)

کلیدواژه‌ها: Machine Learning diabetes Classifiers Prediction Classification

حوزه‌های تخصصی:
تعداد بازدید : ۲۱۸ تعداد دانلود : ۱۴۴
Diabetes is a type of metabolic disorder with a high level of blood glucose. Due to the high blood sugar, the risk of heart-related diseases like heart attack and stroke got increased. The number of diabetic patients worldwide has increased significantly, and it is considered to be a major life-threatening disease worldwide. The diabetic disease cannot be cured but it can be controlled and managed by timely detection. Artificial Intelligence (AI) with Machine Learning (ML) empowers automatic early diabetes detection which is found to be much better than a manual method of diagnosis. At present, there are many research papers available on diabetes detection using ML techniques. This article aims to outline most of the literature related to ML techniques applied for diabetes prediction and summarize the related challenges. It also talks about the conclusions of the existing model and the benefits of the AI model. After a thorough screening method, 74 articles from the Scopus and Web of Science databases are selected for this study. This review article presents a clear outlook of diabetes detection which helps the researchers work in the area of automated diabetes prediction.
۱۶۸.

Early Diagnosis of Alzheimer Disease from Mri Using Deep Learning Models(مقاله علمی وزارت علوم)

کلیدواژه‌ها: Alzheimers disease (AD) Magnetic Resonance Imaging (MRI) Deep Learning (DL) Artificial Neural Network (ANN) and Visual Geometry Group (VGG)

حوزه‌های تخصصی:
تعداد بازدید : ۲۹۷ تعداد دانلود : ۱۳۶
On a global scale, one of the prevalent causes of dementia is Alzheimer’s disease (AD). It will cause a steady deterioration in the individual from the mild stage to the severe stage, and thus impair their capacity to finish any tasks with no aid. The diagnosis is done with the utilization of existing methods which include medical history; neuropsychological testing as well as MRI (Magnetic Resonance Imaging), a lack of sensitivity as well as precision does affect the consistency of efficient procedures. With the deep learning network’s utilization, it is possible to create a framework for detecting specific AD characteristics from the MRI images. While automatic diagnosis is done with the application of diverse machine learning techniques, the existing ones do suffer from certain constraints with regards to accuracy. Thus, this work’s key goal is to increase the classification’s accuracy through the inclusion of a pre-processing approach prior to the deep learning model. The Alzheimer's disease Neuroimaging Initiative (ADNI) database of AD patients was used to develop a deep learning approach for AD identification. In addition, this study will present ideas for Haralick features, feature extraction from Local Binary Pattern (LBP), Artificial Neural Network (ANN), and Visual Geometry Group (VGG)-19 network techniques. The results of the experiments show that the deep learners offered are more effective than other systems already in use.
۱۶۹.

Online Education as a New Normal: Are We Ready for this New Teaching and Learning Mode?(مقاله علمی وزارت علوم)

کلیدواژه‌ها: Covid-19 pandemic Online education Teaching and Learning Outcome Graduate Quality

حوزه‌های تخصصی:
تعداد بازدید : ۲۶۳ تعداد دانلود : ۲۱۳
The spread of COVID-19 pandemic starting in late 2019 has changed the way we conduct our teaching and learning activities especially in Higher Education Institutions (HEIs). Since March 2020, classes have been conducted via online platforms. As a consequence, students missed the campus life, teamwork has been given less emphasis, fieldwork, industry visits and community service have been put aside, and most importantly the achievement of the learning outcomes towards a certain extent has been compromised. The implications of these changes need to be highly considered as they might affect the quality of graduates. This paper intends to discuss the impact of COVID-19 pandemic on the education system and highlight some potential solutions that can be considered by the academics and the top management of HEIs to address the negative repercussions of the current practices. Some research implications are also highlighted in the paper.
۱۷۰.

The Influence of the Shadow Economy on the Financial Security of Ukraine in the Conditions of Informatization of Society(مقاله علمی وزارت علوم)

کلیدواژه‌ها: Shadow Economy Financial Security of the State De-Criminalization of the Economy Legalization of the Shadow Economy Income Amnesty Informatization of society

حوزه‌های تخصصی:
تعداد بازدید : ۱۹۹ تعداد دانلود : ۱۳۹
The article presents the results of the analysis of the indicators of the level of the shadow economy in Ukraine in the period from 2010 to 2020. The level of shadow economy calculated on the basis of such methods as: unprofitable enterprises, monetary, population expenditures - retail trade - services and electricity was used for the analysis. The causes and consequences of shadow economic activity in Ukraine are given. The study found that the downward trend in the shadow economy persists despite the spread of the negative effects of the COVID - 19 pandemic and declining real GDP. In particular, three of the four methods used to assess the level of the shadow economy recorded a decrease in the level of the shadow economy (the method of "population expenditure - retail trade and services"; the electric method; the monetary method). At the same time, the method of enterprise losses showed an increase in the shadow economy, which is largely due to a significant deterioration in the financial situation of enterprises under the restrictions imposed to prevent the rapid spread of the coronavirus pandemic in the world and Ukraine, as well as logistical problems. The practical value of the results is determined by the fact that the conclusions and proposals can be used to more accurately and objectively calculate the level of the shadow economy, which in turn can be the basis for effective decisions to de-shadow and legalize Ukraine's economy.
۱۷۱.

Economic and mathematical modeling of innovative development of the agglomeration on the basis of information technologies(مقاله علمی وزارت علوم)

کلیدواژه‌ها: Urban agglomeration Innovation Innovative development Region Information and Communication Technologies

حوزه‌های تخصصی:
تعداد بازدید : ۳۵۴ تعداد دانلود : ۲۱۶
Management of innovation processes is one of the functions of local governments and, therefore, they should be the initiators and moderators of communication between research organizations and enterprises. The program formation of agglomeration innovative development involves the creation of promoting innovation body, which allows to achieve the maximum involvement degree of all the participants in the innovation process. The article is devoted to the research of urban agglomeration innovative development, the need to create a special body or center for innovation, which will form a set and interconnected, and will be integrated into the urban agglomeration and carry out innovation and technological activities as part of research and production infrastructure. The article develops a method for predicting the effectiveness of the advancement of this body through the digital space using trend models. It is expected to receive three forecasts: optimistic, realistic and pessimistic. This will accelerate the establishment of links between the players of the regional innovation market and contribute to a qualitative change in the spatial and functional structure of urban agglomerations. The development of information and communication technologies allows to create effective systems that will stimulate the agglomerations innovative development . Therefore, the communicative activities of regional governments should be carried out through the use of information and communication technologies. Thus, the urgency of developing a methodology for assessing the increase of the innovative component of agglomeration economic development is due to the low percentage of implementation research results, low science-intensive gross value added in the Ukrainian regions, the possibility of using information and communication technologies. Increasing the number of targeted visits will simplify and speed up the process of establishing links between innovation market players at the agglomeration spatial level in both the short and long term
۱۷۲.

Speech Enhancement using Greedy Dictionary Learning and Sparse Recovery(مقاله علمی وزارت علوم)

کلیدواژه‌ها: Sparse representation Greedy Dictionary Learning Singular Value Decomposition Orthogonal Matching Pursuit Quantization

حوزه‌های تخصصی:
تعداد بازدید : ۲۳۶ تعداد دانلود : ۱۵۷
Most real-time speech signals are frequently disrupted by noise such as traffic, babbling, and background noises, among other things. The goal of speech denoising is to extract the clean speech signal from as many distorted components as possible. For speech denoising, many researchers worked on sparse representation and dictionary learning algorithms. These algorithms, however, have many disadvantages, including being overcomplete, computationally expensive, and susceptible to orthogonality restrictions, as well as a lack of arithmetic precision due to the usage of double-precision. We propose a greedy technique for dictionary learning with sparse representation to overcome these concerns. In this technique, the input signal's singular value decomposition is used to exploit orthogonality, and here the ℓ1-ℓ2 norm is employed to obtain sparsity to learn the dictionary. It improves dictionary learning by overcoming the orthogonality constraint, the three-sigma rule-based number of iterations, and the overcomplete nature. And this technique has resulted in improved performance as well as reduced computing complexity. With a bit-precision of Q7 fixed-point arithmetic, this approach is also used in resource-constrained embedded systems, and the performance is considerably better than other algorithms. The greedy approach outperforms the other two in terms of SNR, Short-Time Objective Intelligibility, and computing time.
۱۷۳.

Automated Novel Heterogeneous Meditation Tradition Classification via Optimized Chi-Squared 1DCNN Method(مقاله علمی وزارت علوم)

نویسنده:

کلیدواژه‌ها: EEG 1DCNN Meditation Tradition Chi-Square dimension reduction

حوزه‌های تخصصی:
تعداد بازدید : ۲۳۱ تعداد دانلود : ۱۴۶
The realm of human-computer interaction delves deep into understanding how individuals acquire knowledge and integrate technology into their everyday lives. Among the various methods for measuring brain signals, electroencephalography (EEG) stands out for its non-invasive, portable, affordable, and highly time-sensitive capabilities. Some researchers have revealed a consistent correlation between meditation practices and changes in the EEG frequency range, observed across a wide array of meditation techniques. Furthermore, the availability of EEG datasets has facilitated research in this field. This study explores the effectiveness of the One-Dimensional Convolutional Neural Network (CNN-1D) based novel classification method, which impressively achieved an 62% training accuracy, showcasing the robustness of these models in meditation classification tasks. The proposed methodology unveiling a novel method to differentiate neural oscillations in 4 types of meditators and control. This approach analyzes an EEG dataset of highly experienced meditators practicing Vipassana (VIP), Isha Shoonya (SYN), Himalayan Yoga (HYT), and untrained control subjects (CTR) by employing chi-square, CNN, hyperparameter models for data analysis, The outcomes indicate that different meditation types exhibit distinct cognitive features, enabling effective differentiation and classification.
۱۷۴.

شناخت اینرسی نوآوري در شرکت هاي دانش بنیان و پیامدهاي آن؛ تحلیل عوامل پیشایندي و پسایندي با نقشه شناختی فازي(مقاله علمی وزارت علوم)

کلیدواژه‌ها: نوآوری اینرسی اینرسی نوآوری شرکت های دانش بنیان

حوزه‌های تخصصی:
تعداد بازدید : ۲۱۷ تعداد دانلود : ۲۲۹
در محیط متلاطم جهان امروز، اگر شرکت یا سازمانی قابلیت انطباق با تغییرات و تحولات جهانی را نداشته باشد، محکوم به سقوط و نابودی است. بنابراین شرکت ها و سازمان ها، اگر خواهان آن هستند که بقای آن ها تهدید نشود، باید خلاقیت و نوآوری را به عنوان کلیدواژه اصلی راهبردها، برنامه ها و سیاست های اصلی خود بپذیرند. از این رو پژوهش حاضر با هدف شناخت و فهم اینرسی نوآوری در شرکت های دانش بنیان انجام شد. این پژوهش بر پایه پژوهش آمیخته و به صورت کیفی و کمی است که از نظر هدف، کاربردی و از حیث ماهیت و روش، توصیفی پیمایشی است. جامعه آماری پژوهش مدیران و اساتید شرکت های دانش بنیان هستند که به عنوان خبرگان، نظرات آن ها در بخش کیفی و کمی پژوهش مورد بررسی قرار می گیرد. اعضای نمونه آماری این پژوهش به وسیله روش نمونه گیری هدفمند انتخاب گردیدند. در بخش کیفی پژوهش ابزار گردآوری اطلاعات مصاحبه نیمه ساختاریافته است که روایی و پایایی آن با استفاده از ضریب CVR و آزمون درون کدگذار و میان کدگذار تایید شد. ابزار گردآوری اطلاعات در بخش کمی نیز پرسشنامه است که روایی و پایایی آن با استفاده از روایی محتوا و آزمون مجدد تایید شد. در بخش کیفی، داده های کیفی بدست آمده از مصاحبه با استفاده از نرم افزار Atlas.ti و روش کدگذاری تحلیل شد و عوامل ایجاد کننده اینرسی نوآوری در شرکت های دانش بنیان ایران شناسایی شدند. به علاوه در بخش کمی پژوهش، با استفاده از روش FCM عوامل ایجاد کننده و همچنین پیامدهای اینرسی نوآوری درشرکت های دانش-بنیان ایران اولویت یابی شده و مهمترین عوامل ایجاد کننده و پیامدهای اینرسی نوآوری در شرکت های دانش بنیان شناسایی شدند. نتایج پژوهش نشان دهنده آن است که حاکمیت فرهنگ تقلید به جای فرهنگ نوآوری، گرفتاری به سندروم آرتروز فکری، ترس و روحیه محافظه کارانه، انجماد فکری و استفاده از تجربیات قبلی در حل مسئله جدید، مهمترین عوامل ایجاد کننده اینرسی نوآوری هستند همچنین چهار عامل از جمله، کاهش کارایی و بهره وری، ضعف در یادگیری و حل مسئله، اخذ تصمیمات نامطلوب و مخاطره بقای سازمان و پدیدایی انسداد و بن بست استراتژیک پیامدهای بسیار مهم اینرسی نوآوری در شرکتهای دانش بنیان هستند.
۱۷۵.

The Innovative Technique of AD/AC and ZP/ZR Appraising of Malaysia’s Zakat Fund Practice in The Presence of Covid-19 Pandemic: The Case of Fully, Partially and Non-Privatized State Zakat Institutions(مقاله علمی وزارت علوم)

نویسنده:

کلیدواژه‌ها: Zakat funds Zakat institutions efficiency Sustainability Covid-19 pandemic

حوزه‌های تخصصی:
تعداد بازدید : ۱۱۸ تعداد دانلود : ۱۰۶
Technology innovation affects both the public and private non-financial sectors, the zakat institution (Islamic social finance) included. The institution uses an online system to communicate with zakat payers and zakat recipients to ensure its effectiveness in terms of collection and distribution. This research focuses on the adoption of a technique known as AD/AC and ZP/ZR, which is mainly utilized by partially and non-privatized State zakat institutions in Malaysia. To this end, three (3) techniques pertaining to appraising the performance of Malaysia’s Zakat institutions in managing Zakat funds were established. The analysis also includes the adverse impact of Covid-19 pandemic on the performance of zakat collection of the respective zakat institutions in Malaysia. In this relation, a quantitative approach was adopted using the primary and secondary data collected from JAWHAR and various states’ zakat institutions. By utilizing a technique of online data collection and applying the AD/AC as well as ZP/ZR methods, the performance of Malaysia’s zakat institutions is appraised. Furthermore, with the help two (2) ratios and eight (8) scenarios the performance of the innovative technique of AD/AC and ZP/ZR for zakat collection and disbursement, efficiency and sustainability of zakat institutions in Malaysia were evaluated. The results show that most zakat institutions, particularly those that deal with zakat payments, have begun to use the technique AD/AC and ZP/ZR within their organizations. The performance of zakat institutions in all states in terms of zakat distribution and disbursement do not have a consistent trend for the period 2016-2020. However, there is still a dearth of technology being used for zakat disbursements and fund reporting. From the observed data, with 2016 being the exception, for each remaining year, a state in Malaysia is ranked as the best technology performer or the most efficient. Selangor - fully privatized state (2017), Pulau Pinang - fully privatized state (2018), Federal Territory - partially privatized state (2019) and Negeri Sembilan-partially privatized state (2020) are the most efficient for the respective year. The sustainability of each zakat institution in Malaysia in the presence of Covid-19 pandemic was ascertained as well. Interestingly, contrary to the efficiency result, all non-privatized states (Kedah, Sabah and Kelantan) and one partially privatized state (Negeri Sembilan) were sustainable in coping with Covid-19 pandemic, while all fully privatized states (Selangor and Pulau Pinang) were not. Overall, it was conjectured that the technique AD/AC as well as ZP/ZR would help to improve the operations of zakat institutions to become more efficient and successful in distributing zakat fund to the poor. However, as zakat collecting and distribution involved millions of records, its management is still debatable by all parties.
۱۷۶.

Social Media Value Creation Practices and Interactivity of Electronic Word of Mouth Systems(مقاله علمی وزارت علوم)

کلیدواژه‌ها: social media Value Creation Social media marketing Consumer engagement Online shopping

حوزه‌های تخصصی:
تعداد بازدید : ۲۹۱ تعداد دانلود : ۱۹۴
The main drivers of value creation in a ‘brand community’ are social networking, community engagement, impression management, and brand use. Marketers are therefore interested in determining which factors affect the value creation practices. This study examines the impact of the Interactivity of Electronic Word of Mouth (EWOM) systems on value creation practices in a brand community, which in turn influences the loyalty of the customers. In this regard, a conceptual model was developed and tested by the researchers of the current study. The results indicate that perceptions of the users regarding the interactivity of EWOM systems, highly impact only three of the four value creation practices including community engagement practices, impression management practices, and brand use practices. Furthermore, the researchers found that collective value creation practices could significantly and directly enhance brand loyalty. Several theoretical contributions and managerial implications were also discussed
۱۷۷.

الگوسازی بعد دانشی در نظام نوآوری با رویکرد فراترکیب و دیماتل خاکستری(مقاله علمی وزارت علوم)

کلیدواژه‌ها: بعد دانشی نظام نوآوری دیماتل خاکستری فراترکیب مدیریت دانش نظام نوآوری یادگیری و پژوهش

حوزه‌های تخصصی:
تعداد بازدید : ۲۹۸ تعداد دانلود : ۲۶۸
پژوهش حاضر به بررسی مدل ها و ادبیات علمی حول نقش دانش در نظام نوآوری به استخراج مدلی از بعد دانشی نظام نوآوری جهت ارائه در یک سازمان نظامی پرداخته و نحوه تعاملات بین اجزای مدل را کشف می نماید. پارادایم تحقیق تفسیری، با رویکرد کاربردی و توسعه ای، با استراتژی قیاسی- استقرائی و روش آمیخته شکل گرفته است. جمع آوری داده های پژوهش بصورت کتابخانه ای و میدانی و روش نمونه گیری بصورت نظری بود. جامعه آماری این پژوهش در بخش کیفی مقالات علمی موجود در پایگاه های پژوهشی بودند و به صورت تمام شمار مورد بازبینی قرار گرفتند. در بخش کمی نیز جامعه آماری شامل خبرگان حوزه نوآوری و تحصیلکردگان دانشگاهی بودند. در این پژوهش ابزار گرداوری داده شامل بررسی اسناد و مدارک و همینطور ماتریس ورودی روش دیماتل در قالب پرسشنامه مورد استفاده قرار گرفتند. جامعه پژوهش در بخش کیفی شامل اسناد علمی مشخص با روش نمونه گیری نظری مورد بازبینی قرار گرفت. همینطور در بخش کمی جامعه پژوهش خبرگان این حوزه با روش نمونه گیری هدفمند مورد توجه قرار گرفتند. در این پژوهش با استفاده از رویکرد فراترکیب مبتنی بر رویکرد باروسو و ساندلوفسکی که شامل هفت گام اساسی است و کنکاش پژوهش های گذشته که با توجه به معیارهای ورودی شامل مقالات علمی با درجه مشخص و بعد از سال 2000 میلادی ، مفاهیم استخراج شده و در نهایت اجزای بعد دانشی نظام نوآوری شناسایی شدند. این اجزا که پس از غربالگری منابع، از 48 منبع گرداوری گردیدند، در قالب 84 کد استخراج گردید که در بطن ده مضمون اساسی جای دهی شدند. این مضامین در قالب مقولات سه گانه پژوهش، یادگیری و مدیریت دانش بعد دانشی نظام نوآوری را شکل دادند. مدل استخراج یافته طی یک پرسشنامه توسط 10 نفر از خبرگان یک سازمان نظامی مورد نظر قرار گرفته و بومی شد. در ادامه با استفاده از روش دیماتل به بررسی نحوه اتصال اجزا و بررسی کنش های متقابل بین آن ها در بین خبرگان یک سازمان نظامی پرداخته شد. اعتبار پژوهش در بخش کیفی با روش حیاتی و کاپای کوهن و در بخش کمی با مراجعه به خبرگان مورد تایید قرار گرفت. نتایج نشان داد که دو متغیر "مقدمات یادگیری" و "صیانت از دانش" به عنوان عواملی که بیشترین میزان مجموع اثرگذاری و اثر پذیری را دارا هستند( به ترتیب با مقادیر 2.0841 و 1.5240) در مجموعه عوامل به عنوان بازیگران مهمی شناخته می شوند. همچنین دو متغیر "مقدمات یادگیری" و " آموزش" دارای بیشترین مقدار تاثیر گذاری خالص(کسر میزان اثرگذاری از اثر پذیری) در مجموعه این عوامل، به ترتیب با مقادیر 0.9726 و 0.2763، را دارا بودند. از این رو این دو عامل به عنوان بیشترین تحریک کننده مجموعه عوامل به شمار آمده و نیاز است در طرحریزی ها مورد توجه قرار گرفته شوند.
۱۷۸.

The Effect of COVID-19 on Information Technology (IT) Marketing and Digital Business in Global Market(مقاله علمی وزارت علوم)

کلیدواژه‌ها: Information Technology Marketing Advertising COVID-19 pandemic

حوزه‌های تخصصی:
تعداد بازدید : ۲۵۱ تعداد دانلود : ۲۲۷
The worldwide Covid-19 epidemic while affecting numerous places, has had a profound effect on virtual advertising and advertising and, globally, in the provinces and at the neighborhood level. except, this effect for the most element become positive, in contrast to what has seen in exclusive sectors which include economy, human sources, etc., whilst contamination reasons a variety of incapacity amongst clients and advertisers alike, in phrases of welfare, social work, inflation, business, and many others., the equal shifted conduct goes as a long way as running. , investing strength, getting into self-schooling, adopting new programs from the internet, expanding social and hygiene concerns, retaining distance strategies from complete regions, internet-based media willpower, get right of entry to online sources, etc., and this has greatly impacted the display and endorsed efforts. The moral movement has moved past the PC and digital international, which places open doors for advertisers and products to connect with clients more efficiently than ever before. With the arrival of expanded online media and the call for pc-generated content material, the evolved Media have given advertisers a part of the monetary freedom. At the equal time, this has, in turn, enabling advertisers to be extra proactive and to engage with the public at the same time as appearing excessive excellent demonstration programs. The purpose of this study is to explore, investigate, and recognize the effect of coronavirus on the digital market and businesses.
۱۷۹.

Effects of the Pandemic on the Adoption of E-Wallets Among Young Adults in Malaysia(مقاله علمی وزارت علوم)

کلیدواژه‌ها: E-wallet Adoption Performance Expectancy Effort Expectancy Social influence Facilitating conditions compatibility

حوزه‌های تخصصی:
تعداد بازدید : ۱۹۴ تعداد دانلود : ۲۰۰
The rapid growth and advancement of electronic devices and technologies in the FinTech industry empower new innovative products and services. The covid-19 pandemic could have a devastating effect on Malaysia’s economy, but it has offered additional opportunities for the E-wallet segment of the Fintech business to thrive. The E-wallet segment of FinTech is one of the latest innovations that is currently growing as there is a need for contactless payments during the pandemic situation. The main objective of the study is to examine the factors affecting e-wallet adoption among young adults in Malaysia. A sample of 200 responses was analyzed using Smart PLS 3.0. The findings revealed that the factors of “performance expectancy”, “effort expectancy”, “compatibility”, and “social influence” have a positive and significant impact during the pandemic; however, the factor of “facilitating conditions” has no significant impact on the adoption of the E-wallets. The study substantiates the key and important variables of adoption in order to develop and evolve E-wallet providers' existing services. Particularly, due to the increasing importance of e-commerce, E-wallet service providers are urged to focus on the system's interoperability, which encourages individuals or customers to use the strategy.  They should include unique features that allow customers to accept the service, trust its benefits and feel comfortable using the technology. The study is useful to the E-wallet providers to improve the existing services. The findings also guide the companies offering E-wallets to enhance the usage and adoption of their services.
۱۸۰.

A New S-Box Design by Applying Bat Algorithm Based Technique(مقاله علمی وزارت علوم)

کلیدواژه‌ها: Cryptography Block Cipher S-box Nonlinearity Bat algorithm

حوزه‌های تخصصی:
تعداد بازدید : ۲۶۲ تعداد دانلود : ۱۶۷
Substitution-boxes (S-boxes) are very important nonlinear components used for achieving strong confusion for enhancing cryptographic security in most of the block ciphers. Designing cryptographically strong S-boxes has been a major research domain for the designers of symmetric crypto systems. In the proposed research work, Bat Algorithm based swarm technique is proposed to design strong S-boxes.  Cryptographic strong S-boxes are obtained by the developed swarm technique. Authors analyze cryptographic strength of the obtained S-box by evaluating properties like Bijectivity, Nonlinearity, Bit-Independence Criterion, Linear Probability and Differential Uniformity. The obtained performance parameters for the designed new S-box by the swarm technique are compared with some recently reported S-boxes in the literature. The designed S-box has good cryptographic strength. The designed S-box has good cryptographic strength like nonlinearity = 110.75 and average Strict Avalanche Criterion (SAC) value = 0.506. For the constructed S-box, most of the Differential uniformity components are 4 and shows uniform distribution approximately. The proposed new S-box is also free from the fixed points.

پالایش نتایج جستجو

تعداد نتایج در یک صفحه:

درجه علمی

مجله

سال

زبان