

Generation of Syntax Parser on South Indian Language using Bottom-Up

Parsing Technique and PCFG

M. Rajani Shree*

*Corresponding Author, Research Scholar, Visvesvaraya Technological University, Belagavi,

Karnataka, Assistant Professor, BNMIT, Bengaluru, Karnataka. E-mail:

rajanichandu.aeroit@gmail.com

Shambhavi B. R.

Associate Professor, Department of Information Science and Engineering, BMSCE, Bengaluru,

Karnataka. E-mail: shambhavibr.ise@bmsce.ac.in

Abstract

In our research, we provide a statistical syntax parsing method experimented on Kannada

texts, which is an official language of Karnataka, India. The dataset is downloaded from

TDIL website. Using the Cocke-Younger-Kasami (CYK) parsing technique, we generated

Kannada Treebank dataset from 1000 annotated sentences in the first stage. The Treebank

generated in this stage contains 1000 syntactically structured sentences and it is used as input

to train the syntax parser model in the second stage. We have adopted Probabilistic Context

Free Grammar (PCFG) while training the parser model and extracting the Chmosky Normal

Form (CNF) grammar from a Treebank dataset. The developed syntax parser model is tested

on 150 raw Kannada sentences. It outputs with the most likely parse tree for each sentence

and this is verified with golden Treebank. The syntax parser model generated 74.2%

precision, 79.4% recall, and 75.3% F1-score respectively. The similar technique may be

adopted for other low resource languages.

Keywords: Natural Language Processing; Artificial Intelligence; Syntax Parser; CYK

Parsing Algorithm; Probabilistic Context Free Grammar.

Journal of Information Technology Management, 2023, Vol. 15, Special Issue, pp. 19-33 Received: February 26, 2022

Published by University of Tehran, Faculty of Management Received in revised form: May 07, 2022

doi: https://doi.org/ 10.22059/jitm.2022.89408 Accepted: August 18, 2022

Article Type: Research Paper Published online: October 19, 2022

© Authors

Introduction

Finding the right syntactic structure is the most important component of understanding any

sentence. As a result, determining any sentence's syntactical structure is helpful in

understanding its meaning. Syntax parsing is one of the most essential processes in Artificial

https://doi.org/10.22059/jitm.2022.89408
https://orcid.org/0000-0002-8853-2065
https://creativecommons.org/licenses/by-nc/4.0/

Generation of Syntax Parser on South Indian Language using Bottom-Up Parsing… 20

Intelligence (AI) for extracting the meaning from natural language speech or text. High end

NLP applications like semantic parsing, sentiment analysis, word sense disambiguation, text

summarization and many others require intensive syntactical analysis.

Even though much research has been done on several Indian languages, there is still a

research lag on some Indian languages that are not English. Researchers developed a

statistical parser for the Bangla language using PCFG (Probabilistic Context Free Grammar)

and CYK approaches (A. Khatun and M. M. Hoque, 2017). On 2025 test sentences with a

maximum of 9 words, they achieved an average accuracy of 93 percent. Only 1891 of the

2025 input sentences were correctly processed, leaving the remaining 134 sentences unparsed.

Before being fed into their model, the words were given with POS labels (Kumar, D et al.,

20221).

However, in our proposed study, we feed raw sentences to the parser model, which

tokenizes each phrase into words and assigns POS labels based on the Treebank dataset's

knowledge. In test phrases, the maximum number of words that we have given is 12. The

strings of the grammar during execution are represented as integers in our work. This not only

reduces the amount of RAM used, but it also increases performance due to the fact that the

two integers can be compared in a single clock cycle (Basheer, S et al., 2020). Furthermore, in

grammatical rules, string comparison is more computationally intensive. Implementing the

PCFG, on the other hand, can significantly speed up the parsing process.

We worked efficiently to create a statistical parser that could parse natural text

syntactically and the results are promising. On Kannada text, the CYK parsing algorithm has

been used, which correctly parses each phrase and generates the syntactically structured text

that corresponds to it. We generated a Kannada Treebank dataset from 1000 tagged phrases

using CYK parsing algorithm and this is the first step towards our next implementation. This

is a train dataset that will be used to build the syntax parser model. Similarly, we constructed

a Treebank dataset with 150 labeled sentences and referred to it as the "Golden Treebank

Dataset."

The CYK algorithm is a fast bottom-up parsing algorithm that eliminates some of the

limitations of previous bottom-up methods. Intermediate solutions are generated and stored in

a two-dimensional matrix during the process of parsing each text with the CYK approach.

Only intermediate results that contribute to the whole parsing process will be pursued. To use

CYK parsing technique, we need a special type of grammar known as Chomsky Normal Form

(CNF), because the CYK parser only works with CNF grammar. Any component of the input

sentence spanning i to j can be divided at k and structure can then be formed using sub-

solutions spanning i to k and the following sub-solutions spanning k to j, according to the

CYK parsing algorithm. During parsing, a matrix of size (n+1 * n+1) is created, where n is

the number of words in the input. If a root node is identified at [0, n] inside the two-

Journal of Information Technology Management, 2023, Vol. 15, Special Issue, 21

dimensional matrix, the CYK algorithm is successful for any text. A CYK parsing algorithm

takes O (n3) seconds to execute.

The square of the number of non-terminals is exactly proportional to the complexity of

the inner most loops formed during the execution of the CYK algorithm. The algorithm's

efficiency decreases as the number of production rules increases. The complexity of the

parsing process increases as the number of non-terminals in the production rules increases at a

constant rate L = r2, where r is the number of non-terminals in the production rules. The

basic CYK method necessitates the use of a binary grammar, which is a Chomsky Normal

Form grammar. The algorithm can be tweaked to accommodate any CFG. Converting a

grammar to a CNF grammar, on the other hand, is simpler and more efficient than parsing

with an arbitrary grammar.

CNF is a restricted form of context-free grammar where the RHS of each production rule

is restricted to be either two non-terminals or only one terminal and no empty productions are

allowed. Also there can be no mixed rules that contain non-terminal as well as terminal like

NP → N_NNP ವಿಧಾನ and no right hand side of the production rule contains more than two

non-terminals like S → NP VP DT.

We have covered the background work in section 2, the dataset in section 3, the entire

approach in section 4, and the results in section 5.

Literature Review

In the paper "A karaka based method to parsing of Indian languages", (Akshar Bharati and

Rajeev Sangal, 1990), Linguistics researchers have created a concept of parsing Indian

languages using a Karaaka based approach. The Kaaraka structure was used to define the

grammar. The words from the sentences were collected and run through a morphological

analyzer to retrieve the root and other grammatical information. The gathered data was then

sent into a local word grouper, which created word groups solely on the basis of local data.

The output from the local word group was fed into the core parser, which was tasked with

determining the Kaaraka role for verbs. The Hindi language has been used to implement this

method. According to Madhuri A Tayal et al. (Madhuri A Tayal et al., 2014), determining the

syntactic structure of any sentence is useful in determining the meaning of the sentence,

which is accurate in the majority of circumstances. They developed English grammar rules,

tested the rule-based algorithm on real English sentences to see if the sentences were

syntactically valid, and got an accuracy of 81 percent. The initial stage was to determine the

type of sentence, such as simple, active, passive, complex, and so on. Match all terms of a

sentence with the defined grammatical rules in the second step, which is determined by the

type of sentence.

Generation of Syntax Parser on South Indian Language using Bottom-Up Parsing… 22

The authors presented a syntax analyzer for Kannada using the Kaaraka framework

(Prathibha R J & Padma M C., 2019). They put their work through its paces on the EMILLI

corpus and received a score of 75% accuracy. The connection made between the nouns and

verbs included in a phrase is known as kaaraka. The authors used the Paaninian Grammar

Model to create a rule-based syntax analyzer for Kannada texts. The subject-verb agreement

was used to check the grammatical soundness of each sentence. Identifying and analysing the

link between subject and verb, as well as gender, person (first, second, third), and number, is a

difficult process.

Swati Ramteke et al. (2014) used Hindi wordnet to create a rule-based Lexicon parser for

doing syntactic and semantic analysis on Devanagari script. The parser used semantic

associations to create the parse trees. The lexical parser achieved an average accuracy of 89

percent when tested on new 150 sentences. They are able to achieve good accuracy because

both syntactic and semantic analysis is performed on input. However, only a few numbers of

POS were employed, including as nouns, pronouns, verbs, adverbs, and adjectives. They have

implemented a parser that takes simple sentences, checks for sentence accuracy, and outputs

results as either correct or incorrect sentence (Umamaheswaran, S et al, 2021).

For parsing Indonesian language, Cahyani et al. (2020) used comparable strategies to

those suggested in this study, such as PCFG and Viterbi-CYK algorithm. Using PCFG on

production rules, the Indonesian Corpus was initially pre-processed. The Viterbi-CYK

algorithm was then used to parse and create the parse tree using sentences. The final output is

the parse tree with the highest probability value. They were able to successfully test their

theory on 129 Indonesian sentences. In 2017, another study (A. Khatun & M. M. Hoque) was

published; they introduced a statistical parser for Bangla texts. The CYK Algorithm was used

in conjunction with PCFG to build the most likely parse tree for each sentence. The statistical

parser model was put to the test using a total of 2025 sentences, divided into three categories:

simple, complex, and compound sentences. In 2018, a similar implementation was done on

Bengali sentences by the same Authors (A. Khatun & M. M. Hoque), using the CYK method

for parsing and PCFG to calculate the probabilities of the grammar rules. However, the testing

dataset was expanded to 3500 sentences, which included all types of sentences, and an

average accuracy of 85 percent was achieved.

Monika and Deepak (2015) stated that developing a qualitative parser for agglutinative

and morphologically rich natural languages is a difficult undertaking. The majority of Indian

languages are agglutinative. In their study, they compared the efficiency of numerous

syntactic parser models constructed for a variety of Indian languages. They also discovered

that for several Indian languages, the size of the annotated dataset utilized to train the syntax

parser model is quite limited. In order to create effective parser models for several resource-

poor Indian languages, the size of the annotated dataset must be considerably increased. In a

similar way, Manisha Prajapati and Archit Yajnik (2018) conducted another survey on syntax

Journal of Information Technology Management, 2023, Vol. 15, Special Issue, 23

parsing. The two main parser approaches, Rule-based and Statistical-based parsers, have been

thoroughly compared and discussed. They also extracted and compared the results of several

parsing approaches used on a variety of Indian languages.

In the year 2010 (B M Sagar et al.), a CFG analysis of simple Kannada texts was

conducted. Only simple Kannada sentences were used to demonstrate the process of

producing CFG by the authors. They next evaluate whether the input raw sentences can be

processed successfully or not using the supplied CFG in the next phase. Top-down and

bottom-up strategies were used to parse the grammar. (Praveen Sundar, P.V et al., 2020) has

also attempted to develop simple CFG and grammar formation rules for Marathi sentences.

The defined CFG was then applied to Marathi sentences, parsing each input sentence

according to their defined grammar and determining whether the sentence was accepted or not

(Shalini, A et al., 2018). They tested both top-down and bottom-up parsing strategies on the

supplied grammar and concluded that the top-down parser is better for parsing the rules. The

researchers (N. Chatterjee & S. Goyal, 2007) used an innovative way to parse English

sentences. They derived parse information from texts that had already been parsed. From the

constituent words of parsed text, knowledge was retrieved in two stages: link information and

phrase templates. The input sentences were correctly parsed using these two, with an accuracy

of more than 80%. The authors in 2019 (Altynbek Sharipbay et al.) suggested a syntactic

analysis for simple Kazakh phrases based on the text's semantics. Formal grammar, such as

CNF, parse trees, and ontological models, were used to derive the semantic link. Only simple

sentences were used for syntactical analysis, and the results were impressive. Using the CYK

parsing technique, Elliot Glaysher et al. (2006) attempted to minimize the parsing time

required to create the complete parse tree. Because the CYK parsing technique examines for

all conceivable combinations of grammatical productions, generating the parse trees for each

sentence might take a long time. The researchers changed the CYK parsing code and

streamlined the parsing procedure to avoid this. This was accomplished by just evaluating

partial parsing process decisions rather than waiting for the process to finish (Karthikeyan, T

et al., 2019).

Dataset

The Indian Government Resource Center TDIL (Technology Development for Indian

Languages) provides the tagged Kannada dataset and this is used to generate the Kannada

Treebank dataset in our implementation work. To assign POS (Parts of Speech) tags to each

Kannada word, they used the BIS (Bureau of Indian Standard) tagset standard. To prepare the

dataset for use, it was preprocessed and unnecessary symbols were removed. This dataset

contains 1150 sentences from the Agriculture and Health domains. For developing the syntax

parser model, 1000 sentences are taken as the training set and 150 sentences are considered as

the test set.

Generation of Syntax Parser on South Indian Language using Bottom-Up Parsing… 24

Methodology

In the first step of our proposed work, 1000 Kannada annotated sentences are fed through the

CYK parsing method to build a training Treebank set, which is then fed into the following

step to train the parser model. To produce a golden Treebank dataset for test, 150 Kannada

annotated phrases are fed into the CYK Parsing algorithm. For Kannada, a rule-based

grammar is constructed to do the same. The grammar includes production rules and is a

hybrid of CFG and CNF grammar. The grammatical rules that are not in CNF are converted

from CFG to flexible CNF, as indicated in Table 1.

Table 1. Conversion from CFG to flexible CNF

CFG CFG converted to flexible CNF

S → NP VP DT S → NP+VP DT, NP+VP → NP VP

S → V_VM_VNF NP VP DT
S→ V_VM_VNF+NP+VP DT, V_VM_VNF+NP+VP →
V_VM_VNF+NP VP, V_VM_VNF+NP → V_VM_VNF NP

NP → N_NN NP → N_NN

NP → N_NNP NP → N_NNP

NP → NP VP NP → NP VP

NP → CC_CCS RB N_NNP NP → CC_CCS+RB N_NNP, CC_CCS+RB → CC_CCS RB

NP → CC_CCS QT NP → CC_CCS QT

QT → QT_QTF QT → QT_QTF

QT → QT_QTO QT → QT_QTO

VP → N_NST V_VM_VNF
V_VM_VF

VP → N_NST+V_VM_VNF V_VM_VF,

N_NST+V_VM_VNF → N_NST V_VM_VNF

VP → JJ N_NN V_VM_VNF
VP → JJ+N_NN V_VM_VNF,

JJ+N_NN → JJ N_NN

VP → V_VM_VNF N_NN VP → V_VM_VNF N_NN

VP → PSP VP VP → PSP VP

Kannada Treebank dataset which is obtained in the initial step will be converted into CNF

Treebank dataset for further processing. Because we need to train the syntax parser model and

extract the grammar from a dataset which must be in Chomsky normal format. During the

transformation of Treebank dataset into CNF tree like structure, we removed unary rules from

all the sub-trees recursively. We can observe in Figure 1 that the unary production like

VP → V_VM_VF is converted into VP & V_VM_VF and it is depicted in Figure 2.

One simple example of a tree-like structure of a sentence in original/non-CNF Treebank is

given below:

(S

(NP (JJ ಎಳೆಯ) (N_NN ಮಕ್ಕಳು))

(VP

(N_NN ಪ್ರೂನಿಂಗ್)

(VP (N_NN ಹಿಂತವನನು) (VP (V_VM_VF ದಾಟಿರನವುದಿಲ್ಲ))))

Journal of Information Technology Management, 2023, Vol. 15, Special Issue, 25

(DT .))

The above syntactically structured text is generated for a sentence “ಎಳೆಯ ಮಕ್ಕಳು

ಪ್ರೂನಿಂಗ್ ಹಿಂತವನನು ದಾಟಿರನವುದಿಲ್ಲ .” The meaning of this sentence in English is “Young kids

have not yet crossed the pruning stage.” This sentence is taken from Health domain dataset.
The corresponding NLTK Tree structure for this sentence is given in Figure 1.

Figure 1. non-CNF tree structure

Now the original tree structure which has been shown in Figure 1 is converted into CNF

tree and it is projected in Figure 2.

A tree-like structure of a sentence in CNF Treebank is:

(S

(NP (JJ ಎಳೆಯ) (N_NN ಮಕ್ಕಳು))

(S|NP

(VP

(N_NN ಪ್ರೂನಿಂಗ್)

(VP (N_NN ಹಿಂತವನನು) (VP&V_VM_VF ದಾಟಿರನವುದಿಲ್ಲ)))

(DT .)))

Generation of Syntax Parser on South Indian Language using Bottom-Up Parsing… 26

Figure 2. CNF tree structure

Similarly, all sub-trees from the Treebank are recursively converted to binary trees, a

process known as grammar binarization. If you look at the first level of the tree in Figure 1,

you'll notice that the production rule S → NP VP DT has three non-terminals in the RHS and

is not in Chomsky Normal format. All these types of productions are turned into two non-

terminals in the RHS and then it will be in CNF i.e after applying the binarization procedure.

Figure 2 shows how S → NP VP DT production rule is transformed into S → NP S|NP, S|NP
→ VP DT. Figure 3 depicts the entire process of creating the Syntax parser model, training
the model, generating parsed sentences from the model, and evaluating the model.

Figure 3. Block diagram of Syntax Parser model

Grammar is extracted from the CNF Treebank dataset to train the model in the following

processing stage. The probabilities of each grammar rule are calculated and saved in a

grammar file during the extraction of grammar from a CNF Treebank dataset. Each terminal,

non-terminal, and the occurrences of two non-terminals combined are counted. The

probability of the words (terminals) and non-terminals are calculated using the counts of their

occurrences in the dataset.

An example of a unary count for calculating the probability is given below:

The non-terminal "V_VM_VNG" appeared in the dataset 4 times as a left hand side of the

production rule (V_VM_VNG → "ಬೆಳೆಸನವುದನ/to-grow") with a terminal "ಬೆಳೆಸನವುದನ/to-

Transform Treebank

dataset into training CNF

Treebank dataset

Extract the Grammar from

CNF Treebank dataset

Apply the extracted

grammar on raw sentences

to obtain the parsed

sentences as output

Evaluate the parser’s output

with CNF gold Treebank

dataset

Generate Kannada

golden Treebank

dataset

Transform the Treebank

dataset into golden CNF

Treebank dataset

Generate Kannada

training Treebank dataset

Input raw

sentences to the

model

Journal of Information Technology Management, 2023, Vol. 15, Special Issue, 27

grow" in the right hand side. While the overall count of non-terminal V_VM_VNG appeared

in the dataset 384 times regardless of specific right hand terminals. As a result, the probability

of a word or terminal "ಬೆಳೆಸನವುದನ/to-grow" is 4/384 = 0.01, which will be stored in a CNF

grammar file as ["Q1", "V_VM_VNG", "ಬೆಳೆಸನವುದನ/to-grow", 0.01].

Similarly, in the right hand side of the production rule, the occurrences of two non-

terminals together are also counted and utilized to determine the probability.

An example of the binary count for calculating the probability is shown below:

The two non-terminals DM_DMD N_NN appeared 3417 times in the right hand side of

the production rule "NP → DM_DMD N_NN" along with NP in the left hand side. The total
number of instances of NP on the left hand side of the production, regardless of any right

hand side productions, is 33069. As a result, the probability of NP with regard to DM_DMD

and N_NN is 3417/33069 = 0.10, which is saved as ["Q2", "NP", "DM_DMD", "N_NN",

0.10] in a CNF grammar file.

The original CFG grammar rule present at the top always is S → NP VP DT, this is
transformed to Chomsky Normal format as specified in (1) and this process is termed as

grammar binarization as mentioned earlier also.

S → NP S|NP (1)

S|NP → VP DT (2)

["Q2", "S|NP", "VP", "DT", 1.00] (3)

The probability of a grammar rule (2) is 1.0; it means the occurrences of this are more in a

Treebank dataset. This has been added in a CNF grammar file as shown in (3) and it continues

in this way during the development of syntax parser model. In order to parse every sentence

successfully using CYK algorithm, it has to reduce ultimately to a grammar production rule

(1) where S is the Start symbol. The probability of every non-terminal and terminal is

computed by taking the natural logarithmic of the corresponding number stored in a grammar

file. After calculating the probabilities of all terminals and non-terminals of grammar rules

including the start symbol from a CNF Treebank dataset, these probabilities have been added

in a CNF grammar file.

A CKY chart is created for each sentence during the parsing process conducted by the

model. If a statement is eight words long, the chart will have a dimension of 64 (8*8). In

general, if a sentence's length is n, the chart generated by the CYK algorithm will be n*n. To

make a CYK chart, take each terminal or word from a sentence, determine its corresponding

LHS or non-terminal, calculate their probability, and enter it into the chart. RHS1 is one non-

terminal in a specific production rule. The next step is to extract all feasible combinations

Generation of Syntax Parser on South Indian Language using Bottom-Up Parsing… 28

with another non-terminal known as RHS2 from the grammar file that match the pattern "LHS

→ RHS1 RHS2." To make an entry on the chart alongside LHS, add the probabilities of these

three elements. The assigned probability for each rule is checked because we are using

Probabilistic Context Free Grammar (PCFG). In a chart, if the probability of an existing item

is smaller than the likelihood of a new item, the existing item is replaced by the new item.

For example: - The existing grammar rule “NP → N_NN DM_DMD” is assigned with
the probability of -17.03 which is already stored in a chart. In the next processing steps, if

another grammar rule with the same LHS (NP) and different RHSs like “NP → DM_DMD
V_VM_VNF” is found and its probability is more than the existing one (-12.66), then the

existing rule is replaced by the new rule in a chart. Here -17.03 is less than -12.66,

accordingly the rule “NP → N_NN DM_DMD” is replaced by another rule “NP →
DM_DMD V_VM_VNF”. In this manner, all entries are made, and then these entries from a
CYK chart are traced back to get the full parsed tree of a sentence. The model generates parse

trees with a CNF structure as its final output. In the final stage, compare the model's output to

the golden Treebank dataset to assess the outcomes. Precision, recall, and F1-score

measurements are used to present the findings.

Results

On Kannada text, we have presented a typical approach for identifying the grammatical

structure of any sentence that uses both probabilistic and CYK techniques. After assessing the

Kannada parser's performance, favorable results were found. Figure 4 depicts the general

procedure of any Syntax parser model that may be constructed for any natural language.

Figure 4. Evaluation of Parser model performance

Figures 5 and 6 demonstrate the parse tree of a sentence from a golden data set and the

parse tree of a sentence obtained as an output from the syntax parser model, respectively.

Journal of Information Technology Management, 2023, Vol. 15, Special Issue, 29

The two parse trees shown in Figure 5 and Figure 6 are having the same sentence “ಆ

ಕಾರಣ ಈ ವಯೋವಾನದಲ್ಲಲ ಗರಿಷ್ಠ ಕ್ಲ್ಲಕೆ ಸಾಧ್ಯವಾಗನತತದೆ .”. The meaning of this text in English is

“for this reason, it is possible to learn at the maximum extent”. This is the continuation of a

previous sentence “Young kids have not yet crossed the pruning stage.” which is shown in

Figure 1 and Figure 2.

Figure 5. syntax tree of a sentence from golden dataset

Figure 6. syntax tree of a sentence obtained from a parser model

{('S', 1, 8), ('VP', 3, 7), ('NP', 5, 6), ('S|NP', 3, 8), ('NP', 1, 2), ('NP', 3, 4)} (4)

{('S', 1, 8), ('VP', 3, 7), ('NP', 3, 5), ('S|NP', 3, 8), ('NP', 1, 2), ('NP', 3, 4)} (5)

The first set (4) comes from a golden Treebank dataset, and the parse tree for it can be

shown in Figure 5. The second set (5) is a parser's output Treebank, with its associated parse

tree depicted in Figure 6. These two sets have the same length, which are 6. Each item in a set

is nothing more than a branch of a parse tree. Figure 6 and Figure 7 both are same, but Figure

7 highlights the sub-branch which is nothing but the item "'NP', 3, 5" from set (5). It signifies

that 'NP' is the parent node in the highlighted sub-branch from Figure 7, and it covers the

Generation of Syntax Parser on South Indian Language using Bottom-Up Parsing… 30

terminals or words from word 3 to word 5 in the sentence “ಆ ಕಾರಣ ಈ ವಯೋವಾನದಲ್ಲಲ ಗರಿಷ್ಠ

ಕ್ಲ್ಲಕೆ ಸಾಧ್ಯವಾಗನತತದೆ”.

Figure 7. Parsed Tree obtained from Parser model

We can see that an item ('NP', 5, 6) in the first set (4) does not match with an item ('NP',

3, 5) in the second set (5). The remaining pieces from the two sets are otherwise identical. It

indicates that the two parse trees from Figures 5 and 6 differ slightly. This is because the

Kannada words in the golden Treebank dataset were manually tagged with suitable POS

labels before the Treebank set was generated. However, the Syntax Parser model

automatically assigns POS tags to the words in the generated Treebank set, which may or may

not be totally appropriate. For example the word “ವಯೋವಾನದಲ್ಲಲ” is rightly tagged as N_NN

in the golden dataset and it is depicted in Figure 5, but the same word is incorrectly tagged by

the parser as V_VM_VNF in Figure 6. The words in the test dataset if not found in training

Treebank dataset are interpreted as ‘RARE’ words and automatically tagged by the model

based on the patterns or sequence of the grammar rules learnt. Hence this may lead to the

selection of different production rules which may not be the same as in the golden Treebank

dataset.

Table 2 depicts the overall results obtained after comparing the parse trees from the

golden Treebank dataset with the Treebank set created by the designed model. Table 2 shows

that the row with "S" as a parent node or root node has precision, recall, and F1-score values

of 1.00. It signifies that both Treebank sets have a 100 percent similar match. However, in

another row, the non-terminal or parent node "VP|RB" has precision, recall, and F1-score of

0.00. It implies that, despite the fact that this non-terminal appeared as a parent node three

times in the tree structure, no similar branch pattern was detected in any of the phrases,

resulting in a score of 0.00. Table 2 contains only the parent nodes of trees or sub-trees;

production rules such as “JJ → ಗರಿಷ್ಠ/Maximum”, “DM_DMD → ಆ/that” etc. (Means leaf

nodes) and are not included.

Journal of Information Technology Management, 2023, Vol. 15, Special Issue, 31

Table 2. Average results gained from the built parser model

Parent nodes Total Precision Recall F1-Score

CC_CCD 10 0.364 0.444 0.400

NP 590 0.814 0.780 0.797

NP&NP2 2 0.000 0.000 0.000

NP|N_NN 5 0.800 0.800 0.800

NP|RP_INTF 0 0.000 0.000 0.000

N_NST 1 1.000 1.000 1.000

QT 7 0.500 0.500 0.610

S 150 1.000 1.000 1.000

S|CC_CCS 35 0.346 0.245 0.344

S|CC_CCS|NP 2 1.000 1.000 1.000

S|NP 125 0.938 0.922 0.930

S|V_VM_VNF 39 0.500 0.667 0.571

S|V_VM_VNF|NP 2 1.000 1.000 1.000

VP 190 0.740 0.763 0.751

VP|RB 3 0.000 0.000 0.000

VP|RP_INTF 6 0.133 0.333 0.190

VP|RP_RPD 1 0.000 0.000 0.000

V_VM_VNF 17 0.667 0.588 0.625

Total 1185 0.732 0.754 0.713

Conclusion

We used a novel strategy to combine CYK and probabilistic CFG approaches to create an

effective statistical Syntax parser model for Kannada, which is discussed in this paper. The

Kannada Treebank dataset, which contains 1000 syntactically organized phrases, was used to

train the Parser. The prepared syntax parser model was put to the test using 150 unlabeled/raw

Kannada phrases and the results were promising. The model's average precision, recall, and

F1-score are respectively 74.2 percent, 79.4 percent, and 75.3 percent. If the sizes of both the

train and test Treebank datasets are increased, the model will become more efficient, and this

is a future goal. Given the paucity of research on many Indian languages, we set out to create

an efficient tool for parsing Kannada phrases and producing a grammatically linked structured

tree.

Conflict of interest
The authors declare no potential conflict of interest regarding the publication of this work. In

addition, the ethical issues including plagiarism, informed consent, misconduct, data

fabrication and, or falsification, double publication and, or submission, and redundancy have

been completely witnessed by the authors.

Funding
The author(s) received no financial support for the research, authorship, and/or publication of

this article

Generation of Syntax Parser on South Indian Language using Bottom-Up Parsing… 32

References

A. Khatun and M. M. Hoque. (2017). Statistical parsing of Bangla sentences by CYK algorithm,

International Conference on Electrical, Computer and Communication Engineering (ECCE), pp.

655-661, doi: 10.1109/ECACE.2017.7912986.

A. Khatun and M. M. Hoque. (2018). Probabilistic Approach of Parsing Bengali Sentences, IEEE

International WIE Conference on Electrical and Computer Engineering (WIECON-ECE), pp.

55-58, doi: 10.1109/WIECON-ECE.2018.8783000.

Akshar Bharati and Rajeev Sangal. (1990), A karaka based approach to parsing of Indian languages,

COLING 90: Proceedings of the 13
th
 conference on Computational linguistics, Volume 3, pages

25-29, https://doi.org/10.3115/991146.991151

Altynbek Sharipbay, Bibigul, Assel, Banu and Gaziza. (2019). Syntax parsing model of Kazakh

simple sentences, DATA '19: Proceedings of the Second International Conference on Data

Science, E-Learning and Information Systems, Article No. 54, Pages 1–5.

DOI: 10.1145/3368691.3368745.

B M Sagar, G Shobha and P Ramakanth Kumar. (2010). Context Free Grammar Analysis for simple

Kannada sentences, Proceedings of the International Conference [ACCTA-2010] on Special

Issue of International Journal of Computer and Communication Technology (IJCCT), Vol. 1,

Issue 2 , Article 6.

DOI: 10.47893/IJCCT.2010.1033.

Basheer, S., Anbarasi, M., Sakshi, D.G. & Vinoth Kumar V., Efficient text summarization method for

blind people using text mining techniques. Int J Speech Technol 23, 713–725 (2020).

https://doi.org/10.1007/s10772-020-09712-z,

D. E. Cahyani, L. Gumilar and A. Pangestu. (2020), Indonesian Parsing using Probabilistic Context-

Free Grammar (PCFG) and Viterbi-Cocke Younger Kasami (Viterbi-CYK), 3rd International

Seminar on Research of Information Technology and Intelligent Systems (ISRITI), pp. 56-61,

doi: 10.1109/ISRITI51436.2020.9315395.

Elliot Glaysher and Dan Moldovan. (2006). Speeding Up Full Syntactic Parsing by Leveraging Partial

Parsing Decisions, Proceedings of the COLING/ACL 2006 Main Conference Poster Sessions,

pages 295–300, Sydney, Association for Computational Linguistics.

Karthikeyan, T., Sekaran, K., Ranjith, D., Vinoth kumar, V., Balajee, J.M. (2019) “Personalized
Content Extraction and Text Classification Using Effective Web Scraping Techniques”,
International Journal of Web Portals (IJWP), 11(2), pp.41-52

Kumar, D., P., S., Jahangir, A., Sah, N. K., & V., V. (2021). Intelligent Speech Processing Technique

for Suspicious Voice Call Identification Using Adaptive Machine Learning Approach.

Advances in Computational Intelligence and Robotics, 372–380. doi:10.4018/978-1-7998-6870-

5.ch025

Madhuri A Tayal, M.M. Raghuwanshi and Latesh Malik. (2014). Syntax Parsing: Implementation

using Grammar-Rules for English Language, International Conference on Electronic Systems,

Signal Processing and Computing Technologies (ICESC), DOI: 10.1109/ICESC.2014.71

Manisha Prajapati and Archit Yajnik. (2018). Parsing for Indian Languages: A Literature Survey,

International Journal of Computer Sciences and Engineering, Vol.-6, Issue-8, E-ISSN: 2347-

2693, https://doi.org/10.26438/ijcse/v6i8.10091018.

N. Chatterjee and S. Goyal. (2007). An Example Based Approach for Parsing Natural Language

Sentences," 2007 International Conference on Computing: Theory and Applications

(ICCTA'07), pp. 451-457, doi: 10.1109/ICCTA.2007.28.

https://dl.acm.org/doi/proceedings/10.1145/3368691
https://dl.acm.org/doi/proceedings/10.1145/3368691
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1145%2F3368691.3368745?_sg%5B0%5D=Uae1atQ2thirxJ2nKWbzrHQWLMmaWXVXsQlHxa8F_JJSZ3NemT3PNuDETIF-gkRIBCY-RH_SboTTYbq8m9cQYxRJTA.rB4JrNorDZyHydkGRJeCuuObhEpuAuDhqkld3kLWrQyh_0neFIJoQFwFqLfRQ9YE1CaLHgai3-Cunsbi8RIbyA
https://www.interscience.in/ijcct
https://www.aclweb.org/anthology/people/e/elliot-glaysher/
https://www.aclweb.org/anthology/people/d/dan-moldovan/
https://www.aclweb.org/anthology/P06-2038.pdf
https://www.aclweb.org/anthology/P06-2038.pdf

Journal of Information Technology Management, 2023, Vol. 15, Special Issue, 33

Prathibha R J and Padma M C. (2019). Design of Syntax Analyzer for Kannada Sentences Using Rule-

Based Approach, Emerging Research in Electronics, Computer Science and Technology,

Lecture Notes in Electrical Engineering, Springer, DOI: 10.1007/978-981-13-5802-9_26.

Praveen Sundar, P.V., Ranjith, D., Vinoth Kumar, V. et al. Low power area efficient adaptive FIR

filter for hearing aids using distributed arithmetic architecture. Int J Speech Technol 23, 287–
296 (2020). https://doi.org/10.1007/s10772-020-09686-y

Shalini, A., Jayasuruthi, L., & VinothKumar, V. (2018). Voice Recognition Robot Control Using

Android Device. Journal of Computational and Theoretical Nanoscience, 15(6), 2197–2201.

doi:10.1166/jctn.2018.7436

Swati Ramteke, Komal Ramteke and Rajesh Dongare. (2014). Lexicon Parser for syntactic and

semantic analysis of Devanagari sentence using Hindi wordnet, International Journal of

Advanced Research in Computer and Communication Engineering, Volume 3, Issue 4, ISSN

(Online) : 2278-1021 ISSN (Print) : 2319-5940.

Umamaheswaran, S., Lakshmanan, R., Vinothkumar, V. (2020). New and robust composite micro

structure descriptor (CMSD) for CBIR. International Journal of Speech Technology (2019),

Vol. 23, Issue 2, pp. 243-249

Bibliographic information of this paper for citing:

Shree, M. Rajani & B. R., Shambhavi (2023). Generation of Syntax Parser on South Indian Language

using Bottom-Up Parsing Technique and PCFG. Journal of Information Technology Management, 15

(Special Issue), 19-33. https://doi.org/ 10.22059/jitm.2022.89408

Copyright © 2023, M. Rajani Shree and Shambhavi B. R.

https://doi.org/10.22059/jitm.2022.89408

