بررسی تأثیر گیمیفیکیشن بر رفتار خرید مصرف کنندگان با استفاده از شبکه عصبی مصنوعی (مقاله علمی وزارت علوم)
درجه علمی: نشریه علمی (وزارت علوم)
آرشیو
چکیده
هدف: پژوهش حاضر با هدف بررسی تأثیر گیمیفیکیشن بر رفتار خرید مصرف کنندگان با استفاده از شبکه عصبی مصنوعی در دفاتر گردشگری شهر کرمانشاه اجرا شده است؛ زیرا یافتن راه کارهای نوآورانه جهت جلب رضایت مصرف کنندگان، همواره دغدغه کسب وکارها بوده است. روش: پژوهش از نظر هدف، توسعه ای کاربردی محسوب می شود و با رویکرد کمّی اجرا شده است. برای اجرای پژوهش از روش نیمه آزمایشی از نوع پیش آزمون پس آزمون و پیگیری با گروه آزمایش و کنترل استفاده شد. جامعه آماری، مشتریان دفاتر گردشگری شهر کرمانشاه و درخواست کننده سفر در سه ماهه نخست سال 1400 بودند. از بین آن ها 20 نفر به عنوان گروه آزمایش و 20 نفر به عنوان گروه کنترل انتخاب شد. ابزار گردآوری داده پرسش نامه استاندارد رفتار مصرف کننده کیم بود که روایی و پایایی آن به تأیید رسید. جهت تجزیه وتحلیل آمار توصیفی، از نرم افزار اس پی اس اس و جهت طراحی شبکه عصبی مصنوعی، از نرم افزار متلب استفاده شد. شبکه عصبی مصنوعی با روش توابع پایه شعاعی برای 70 درصد داده ها جهت آموزش و 30 درصد جهت آزمون طراحی شد. یافته ها: یافته های به دست آمده نشان داد که اجرای گیمیفیکیشن، به تغییر رفتار خرید گروه آزمایش منجر شده است؛ در حالی که رفتار خرید گروه کنترل تغییر پیدا نکرده است. به کمک شبکه عصبی مصنوعی طراحی شده، می توان رفتار خرید مصرف کنندگان را بر اساس 9 متغیر ورودی پیش بینی کرد. همچنین این شبکه قادر است تمامی داده های جدید احتمالی را نیز به درستی پیش بینی کند و در این راستا استفاده شود. نتیجه گیری: برای پیش بینی رفتار مصرف کنندگان، روش های نوین، از جمله گیمیفیکیشن، باید به عنوان ابزاری کاربردی برای بازاریابان و کارشناسان فروش به کار رود.Investigating the Impact of Gamification on the Consumer Buying Behavior using Artificial Neural Network
Objective
Finding innovative solutions to satisfy consumers has always been a concern of businesses. Accordingly, this study seeks to investigate the effect of gamification on consumer shopping behavior using the artificial neural network, in the tourist offices of the Iranian western city of Kermanshah.
Methodology
This study is developmental and applicable research. The semi-experimental method (pre-test/post-test) was used with experimental and control groups. The statistical population of this study included the customers of Kermanshah tourist offices with one registered trip in the first quarter of the Iranian calendar year of 1400 (2020-2021). Each of the control and experimental groups consisted of 20 participants. Kim’s consumer behavior standard questionnaire was used to gather the required data. SPSS software was used to analyze descriptive statistics and MATLAB software was used to design an artificial neural network. The artificial neural network was constructed using the radial basis functions. The used data set was divided into 70 percent for training and 30 percent for testing.
Findings
The results of descriptive statistics showed that nine participants in both control and experimental groups were women and 11 were men. In the experimental group, eight participants were single and 12 were married. Seven participants in the control group were single and 13 were married. The average ages of the experimental group and control group were 41.8 years and 39.6 years, respectively. The average number of made trips in the year 1400 for the experimental group, and control group were 3.6 and 3.55, respectively. The achieved results also showed that the average scores of all three dimensions of willingness to attend, word of mouth and purchase intention were increased in the experimental group after applying gamification. These values were increased from 6.5 to 13.15, 8.95 to 17.6, and 7.55 to 12.9, respectively. While in the control group, the average scores in all dimensions remained almost constant. The effect of gamification on changing consumer buying behavior was approved by these results. Furthermore, the behavior of a typical person in experimental or control groups (with or without gamification) was predicted using RBF artificial neural network. The obtained results from the designed neural network showed that all of the predictions using the proposed artificial neural network were predicted correctly. Also, the network was able to classify all of the outputs correctly based on the defined inputs. The network had an acceptable error rate.
Conclusion
Based on the obtained results from the artificial neural network, prediction of customer behavior was done correctly. It should be noted that the gamification activities such as completing the puzzle which was tested in this study should be used accurately in businesses. This result will be useful for businesses, marketers, sales managers, market management analysts, and researchers interested in this field.