آرشیو

آرشیو شماره ها:
۷۲

چکیده

The unpredictability of the stock market makes it a serious area of study and analysis. With the help of the accumulated information available in the current digital age and the power of high-performance computing machines, there is a great focus on using these capabilities to design algorithms that can learn stock market trends and successfully predict stock prices. The main goal is to create an intelligent system that provides these features for predicting short-term stock price trends to facilitate the investment decision process. To increase the accuracy and productivity of these systems and facilitate the routine of using common-sense knowledge in machine learning systems, developing or enriching knowledge bases and ontology for market modeling will be one of the effective measures in this field. In this research, an attempt has been made to strengthen and enrich the basic ontology created by the authors by using other global ontologies related to the subject of the stock market, and parts of the target space that were not addressed have been added to the ontology. By combining reference ontologies, a level of standardization is also created for the ontology and stability in the representation of concepts and relationships is ensured. In the next step, it has been tried to test the impact of the concepts and relations of the ontology in predicting stock price movements. For this purpose, news in the field of economy is considered as input and a model is created that first filters the textual inputs related to the desired stock symbol and then observes their effect on the price changes of the related stock. After improving the performance and comprehensiveness of the ontology, the study conducted in this report presented a model to measure and prove the effect of the relationships in this ontology on price changes. In practice, according to human limitations and the tools used, this effect was observed and confirmed with a proper level of certainty by checking the economic news.

تبلیغات