آرشیو

آرشیو شماره ها:
۶۹

چکیده

هدف: پژوهش حاضر با شناسایی عوامل مؤثر بر نقدشوندگی، مدلی برای پیش بینی وضعیت نقدشوندگی سهام، در بازار اوراق بهادار تهران ارائه کرده است. روش: 23 عامل مشخص شده در مطالعات کتابخانه ای، بر اساس داده های 154 شرکت فعال در فاصله زمانی 1388 تا 1398 استخراج و در قالب دو خوشه افراز شد. با استفاده از معادلات ساختاری با رویکرد حداقل مربعات جزئی، اعتبار متغیرهای شناسایی شده با معیار حاصل از خوشه بندی ارزیابی شد. یافته ها: ارزیابی ارتباط متغیرها در مدل های یادگیری ماشینی نشان داد که جریان نقدی غیرعادی، هزینه اختیاری غیرعادی، خطای تخمین اقلام تعهدی، تفاوت بین سرمایه در گردش تحقق یافته و موردانتظار، سهام شناور آزاد، دوره تصدی حسابرس، حق الزحمه حسابرسی، سهم بازار حسابرس، محافظه کاری و تغییر حسابرس، در خوشه بندی بیشترین تأثیر را دارند. سرانجام بهترین مدل یادگیری ماشینی، بر اساس آموزش و آزمون انتخاب شد. نتیجه گیری: نتایج نشان می دهد که متغیرهای مستقل، بیش از 72 درصد از تغییرات نقدشوندگی را توضیح می دهند. همچنین مدل شبکه های عصبی در مقایسه با سایر مدل های یادگیری ماشینی، توان پیش بینی بیشتری دارد و با 32/99 درصد صحت برازش، مناسب ترین مدل پیش بینی نقدشوندگی است.

تبلیغات