پیش بینی دماهای حداکثر روزانه با استفاده از شبکه های عصبی مصنوعی(مطالعه موردی: کرمان) (مقاله پژوهشی دانشگاه آزاد)
درجه علمی: علمی-پژوهشی (دانشگاه آزاد)
آرشیو
چکیده
با توجه به توانایی شبکه های عصبی مصنوعی در شبیه سازی فرایندهای بسیار پیچیده، از آن ها برای پیش بینی و محاسبه پارامترهای اقلیمی استفاده می شود. هدف این پژوهش نیز پیش بینی دمای حداکثر روزانه در استان کرمان می باشد. بدین منظور پارامترهای اقلیمی روزانه به عنوان ورودی شبکه های عصبی، و دمای حداکثر روزانه به عنوان خروجی شبکه، طی دوره آماری 24 ساله (2013-1989) مورد استفاده قرار گرفته است نتایج این تحقیق بعد از آزمون شبکه، نشان داد که. شبکه پرسپترون چند لایه با توجه به میزان خطا و همبستگی بین داده ها از دقت بیشتری برخوردار است وخطای کمتر و همبستگی بیشتری نسبت به خروجی مورد نظر (دمای حداکثر روزانه) را نشان می دهد. همچنین از بین پارامترهای اقلیمی استفاده شده دمای حداقل و میانگین دمای تر نسبت به دیگر پارامترهای اقلیمی ورودی شبکه عصبی پیش بینی دمای حداکثر روزانه را با خطای کم و همبستگی بیشتری نشان می دهند.Estimating Daily Maximum Temperatures Using Artificial Networks (Case study: Kerman)
Considering the capability of the artificial neural networks in simulating sophisticated processes, it is being used in estimation and computation of climatic parameters. The goal of this research is to estimate the daily maximum temperature in Kerman province. To this aim, daily climatic parameters as input to the neural networks and daily maximum temperature as the output during a statistical period of 24 years (1989-2013) were used, the findings revealed that the output of the multi-layer perceptron neural network, considering the error amount and correlation among data, is more precise and shows lower error and more correlation in relation to the expected output (daily maximum temperature). Also, among other climatic parameters, minimum temperature and the average of the wet temperature indicated the estimation of the daily maximum temperature with lower error and more correlation in comparison to other climatic parameters.