فیلترهای جستجو:
فیلتری انتخاب نشده است.
نمایش ۱۶۱ تا ۱۸۰ مورد از کل ۱٬۸۲۰ مورد.
حوزههای تخصصی:
زمین لغزش به عنوان یک مخاطره طبیعی، همواره خسارات فراوانی ر ا به همراه داشته است. استفاده از تکنیک تداخل سنجی راداری به عنوان یک روش کارآمد در پایاش، پیش بینی، تحلیل، اندازه گیری میزان جایجایی و تعیین محل موقوع همواره مطرح بوده است. دراین پژوهش هدف بررسی، شناسایی و تعیین میزان جابجایی زمین لغزش در شهرستان اردل استان چهارمحال و بختیاری به عنوان یکی از حوضه های کوهستانی کشور می باشد با ایجاد 7 اینترفروگرام بهینه از 10 تصویر ماهواره Envisat مربوط به سال 2005، زمین لغزش های متعدد با میزان جابجایی از 2.8 تا 14 سانتیمتر در منطقه مورد مطالعه شناسایی گردید. در این روش با بهره گیری از اطلاعات فاز تصاویر مختلط SAR، مدل ارتفاعی زمین با دقت متر و مقدار جابه جایی ها و تغییرشکلهای پوسته زمین با دقت زیر سانتیمتر در پوششی پیوسته و وسیع ایجاد گردید. این نتایج بیانگر فعال بودن پهنه های لغزشی این منطقه از لحاظ حرکات دامنه ای است.
مدل جنگل تصادفی جهت شناسایی تحولات میکرو لندفرم ها با استفاده از پهپاد (مطالعه موردی: منطقه افجه در حوضه جاجرود 1397- 1396)(مقاله علمی وزارت علوم)
حوزههای تخصصی:
حوضه آبریز جاجرود در دامنه جنوبی رشته کوه های البرز مرکزی تحت تأثیر تغییرات محیطی زیادی قرارگرفته است. در این مطالعه، از یک روش یکپارچه برای شناسایی تحولات میکرولندفرم های این حوضه بر اساس رویکرد ژئومورفولوژیکی ریزمقیاس با استفاده از داده های تصاویر پهپاد به همراه بررسی میدانی استفاده شد. از اندازه گیری تصاویر پهپادی با رزولوشن مکانی 10 سانتیمتر در بازه زمانی 1396 تا 1397 و الگوریتم یادگیری ماشین با مدل جنگل تصادفی، نقشه های تحولات میکرولندفرم های حوضه جاجرود تهیه شد. این تصاویر با استفاده از نرم افزارهای ENVI 5.1 و ArcMap 10.3 تصحیح شد و سپس با استفاده کد نویسی در Python الگوریتم های موردنظر اجرا شد. واحدهای ریز زمین در حوضه با استفاده از این تصاویر طبقه بندی شدند. سپس، یک نقشه پهنه بندی تحولات از آن تهیه شد. تجزیه تحلیل تصاویر موجب یافتن الگوریتم مناسب برای شناسایی تحولات میکرو لندفرم ها با دقت بسیار بالا در زمان کوتاه شد. نتایج نشان داد که بیشترین تغییرات میکرولندفرم ها در این مدل، مربوط به تغییر پوشش گیاهی به خاک (64/66%) است. با توجه به نتایج به دست آمده مشخص شد که سیل منطقه افجه در سال 1397 سبب تغییرات عمده ای در منطقه شده است. میکرولندفرم های وابسته به پوشش گیاهی دچار تغییرات عمده شده است. به طوری که نمودار تغییرات آن را در بالاترین حد آشفتگی نسبت به میکرولندفرم های پایدارتر بستر سنگی رودخانه جاجرود نشان می دهد.
مدل سازی فضایی توان آب زیرزمینی با استفاده از تلفیق روش آنتروپی بیشینه و روش جنگل تصادفی در محیط سامانه اطلاعات جغرافیایی مطالعه موردی: حوضه آبریز قوریچای اردبیل(مقاله علمی وزارت علوم)
منبع:
هیدروژئومورفولوژی سال ۹ تابستان ۱۴۰۱ شماره ۳۱
116 - 95
حوزههای تخصصی:
آب های زیرزمینی از مهم ترین منابع طبیعی در مناطق خشک و نیمه خشک محسوب می شوند. هدف از این پژوهش شناسایی مناطقی است که توان آب زیرزمینی دارند و اولویت بندی عوامل موثر بر آن هست. در این پژوهش 11 شاخص تأثیرگزار بر توان آب زیرزمینی شامل شیب، ارتفاع، جهت شیب، فاصله از آب راه، تراکم زه کشی، فاصله از گسل، شاخص رطوبت پستی و بلندی، موقعیت پستی و بلندی، سنگ شناسی، کاربری زمین و موقعیت شیب نسبی به کاربرده شد. به روش تصادفی30 درصد از مجموع 58 چشمه در گروه داده های اعتبارسنجی و 70 درصد آن در گروه داده های آموزش گذاشته شد. برای اولویت بندی عامل های مؤثر و پهنه بندی توان آب زیرزمینی در آبخیز قوریچای، روش جنگل تصادفی ارتقاء یافته با بیشینه آنتروپی با بهره گیری از سامانه اطلاعات جغرافیایی به کار برده شد و برای ارزیابی مدل منحنی تشخیص عمل کرد نسبی (ROC) و سطح زیر منحنی (AUC )به کاربرده شد. نتیجه نشان داد که توان آب زیرزمینی در حدود هشت درصد حوضه آبخیز، بیش تر در خروجی حوضه است. بر اساس نمودار VIP لایه TWI با مقدار 329/0 و لایه فاصله از رودخانه با مقدار 175/0 به ترتیب بیش ترین و کمترین عامل های تأثیرگزار بر توان آب زیرزمینی با مقادیر بود. سطح زیر منحنی AUC نشان دهنده ی دقت 87 درصدی در مرحله ی آموزش برای شناخت منطقه های دارای توان آب زیرزمینی بود. نتیجه ی این پژوهش می تواند در مدیریت آب زیرزمینی در حوضه آبخیز قوریچای در رابطه با افزایش جمعیت و همچنین گسترش ساخت و ساز انسانی و توسعه کشاورزی منطقه به کار برده شود.
برآورد فرسایش- رسوب حوضه آبریز سراب سیکان با استفاده از مدل RUSLE(مقاله علمی وزارت علوم)
منبع:
هیدروژئومورفولوژی سال ۹ پاییز ۱۴۰۱ شماره ۳۲
23 - 1
حوزههای تخصصی:
امروزه فرسایش خاک به عنوان یکی از مباحث مهم مدیریت حوضه های آبریز در سطح ملی و جهانی مطرح می باشد. در این پژوهش به منظور شناسایی توزیع مکانی فرسایش خاک و تولید رسوب در حوضه ی آبریز سراب سیکان از معادله ی جهانی اصلاح شده هدر رفت خاک استفاده شده است. با استفاده از داده های بارندگی 17 ساله (1397-1380)، اطلاعات خاک شناسی و مدل رقومی ارتفاعی با تفکیک 10 متری هر یک از فاکتورهای فرسایندگی (R)، فرسایش پذیری (K)، شیب و طول شیب (LS) و حفاظت خاک (P) در محیط ArcGIS تهیه شدند. از سنجنده ی ماهواره سنتینل 2 نیز جهت استخراج و تهیه فاکتور پوشش گیاهی حوضه (C) در محیط نرم افزارENVI 5.3 استفاده شد. در نهایت با ترکیب این فاکتورها در محیط نرم افزار ArcGIS مقدار فرسایش حوضه محاسبه گردید سپس با روش های مختلف نسبت تحویل رسوب (SDR) میزان رسوب تولید شده در حوضه به دست آمد. نتایج نشان داد که مقدار فرسایش در سطح حوضه از 003/0 تا 4/248 تن در هکتار در سال در سطح پیکسل متغیر بوده و میانگین هدر رفت خاک در حوضه 3/22 تن در هکتار در سال می باشد. در بین فاکتورهای مدل، فاکتور LS با ضریب همبستگی 92/0=R2 بیش ترین تأثیرگذاری در فرسایش خاک را نشان داد. همچنین مقدار نسبت SDR با روش های مختلف بین 12/0 تا 36/0 محاسبه گردید که پس از تلفیق با نقشه فرسایش، بار رسوب حوضه محاسبه شد. میانگین بار رسوب با روش بویس 8/2 تن در هکتار در سال می باشد که نسبت به روش های دیگر به مقدار رسوب ایستگاه (65/1 تن در هکتار در سال) نزدیک تر می باشد.
تغییرات مکانی خشکسالی هیدرولوژیک جریان در مقیاس های مختلف زمانی در رودخانه های استان اردبیل(مقاله علمی وزارت علوم)
منبع:
هیدروژئومورفولوژی سال ۹ زمستان ۱۴۰۱ شماره ۳۳
36 - 21
حوزههای تخصصی:
در حین وقوع خشکسالی هیدرولوژیکی، ضمن عدم نیاز آبی بهره برداران، جریان رودخانه کاهش یافته و کیفیت اکوسیستم رودخانه تخریب خواهد شد. تعیین تغییرات زمانی و مکانی شاخص خشکسالی هیدرولوژیک، امکان برنامه ریزی به منظور استفاده بهینه از آب رودخانه ها فراهم می کند. در این پژوهش، تغییرات زمانی و مکانی شاخص خشکسالی جریان رودخانه ای (SDI) در 28 ایستگاه هیدرومتری استان اردبیل مورد ارزیابی قرار گرفت. مقادیر SDI با نرم افزار DrinC محاسبه و ویژگی های خشکسالی هیدرولوژیک تحلیل و تغییرات مکانی SDI در مقیاس های زمانی 1 ماهه، 3 ماهه، 6 ماهه و سالانه در نرم افزار GIS تعیین شد. مقادیر SDI یک ماهه (خشکسالی های کوتاه مدت) نشان داد که خشکسالی در رودخانه های کم آب بیش تر اتفاق افتاده است. این در حالی است که اکثر ایستگاه های پر آب و کم آب، دوره های ترسالی شدید داشته اند. مقادیر SDI سالانه (بلند مدت) در اکثر ایستگاه های در بین بازه 1-≥SDI≥5/1، قرار داشته که نشان از وقوع خشکسالی ملایم هستند. تغییرات مکانی مقادیر SDI نشان داد که تغییرات مکانی در مقیاس یک ماهه کاملاً متفاوت از مقیاس سالانه است. کم ترین وقوع SDI در ایستگاه های بالادست و رودخانه های جاری در دامنه های سبلان بود. خشکسالی های شدید و خیلی شدید در رودخانه هایی اتفاق می افتد که آبدهی آن کم است. هر اندازه آب دهی رودخانه بیش تر باشد وقوع خشکسالی های شدید کاهش می یابد و ثبات جریان آن از رودخانه هایی با آب دهی کم بیش تر است.
آشکارسازی لندفرم های کلان حوضه یزد – اردکان ( با رویکرد کمّی)(مقاله علمی وزارت علوم)
منبع:
پژوهش های ژئومورفولوژی کمی سال دهم بهار ۱۴۰۱ شماره ۴ (پیاپی ۴۰)
178 - 191
حوزههای تخصصی:
شناسایی لندفرم ها از مطالعات پایه ای در دانش ژئومورفولوژی است. اهمیّت شناسایی لندفرم ها به علت کاربرد آن ها در انواع برنامه ریزی های روستایی و شهری، برنامه ریزی آمایش و توریسم است. روش های چشمی در انتخاب بهترین ترکیب های باندی برای شناسایی لندفرم ها هم وقت گیر است و هم به علت ذهنیت گرایی و اعمال سلیقه های شخصی از دقت کافی در تشخیص حدود مرزی لندفرم ها و گاهاً نوع لندفرم ها برخوردار نیست. حل این مسئله از طریق کنکاش های رقومی در متن تصاویر قابل بررسی است. در این تحقیق از روش ترکیب آماری برای معرفی انواع حالات مختلف ترکیبات باندهای انعکاسی و از روش شاخص ترکیب بهینه باندی جهت انتخاب بهترین ترکیب باندی باهدف آشکارسازی لندفرم های کلان حوضه یزد اردکان در متن تصاویر سنجنده ETM+لندست از سری نسل هفتم استفاده شده است. نتایج حاصل از به کارگیری شاخص بهینه باندی در آشکارسازی لندفرم های کلان حوضه یزد اردکان نشان داده است که بهترین ترکیب باندی از بین بیست ترکیب مختلف باندهای طیفی سنجنده ETM+، ترکیب دو سه چهار با مقدار آماری 54.01 و نیز ترکیب یک دو چهار با مقدار آماری 54.02 است، به طوری که انواع دشت سرهای پخش سیلاب، اراضی مرتفع، اراضی کم ارتفاع و کویر یا شوره زارها و همچنین پدیمنت ها شناسایی شده اند.
پهنه بندی خطر وقوع زمین لغزش در حوضه آبریز رودخانه زرد با استفاده از منطق فازی(مقاله علمی وزارت علوم)
منبع:
هیدروژئومورفولوژی سال ۹ بهار ۱۴۰۱ شماره ۳۰
48 - 25
حوزههای تخصصی:
زمین لغزش هر ساله جان هزاران نفر را در سراسر جهان می گیرد و خسارت های هنگفتی را به مردم و دولت ها تحمیل می کند. پهنه بندی خطر زمین لغزش، نواحی سطح زمین را به مناطق ویژه و تفکیک شده ای از درجات بالقوه و بالفعل به لحاظ خطرپذیری تقسیم بندی می کند. این امر می تواند مبنایی برای برنامه ریزی های بلندمدت در سطح منطقه ای و محلی محسوب شود. هدف از انجام این پژوهش، بررسی و پهنه بندی خطر زمین لغزش در حوضه رود زرد واقع در شرق استان خوزستان با استفاده از روش منطق فازی است. بدین منظور ابتدا از طریق بازدیدهای میدانی، نقشه های زمین شناسی و توپوگرافی و با مرور منابع قبلی و بررسی شرایط منطقه، نه عامل طبقات ارتفاعی، شیب، جهت شیب، فاصله از گسل، فاصله از رودخانه، فاصله از جاده، بارش، لیتولوژی و کاربری اراضی به عنوان عوامل مؤثر، بررسی و انتخاب شدند. پس از طبقه بندی داده ها و مرحله فازی سازی، نقشه های پهنه بندی خطر زمین لغزش با استفاده از عملگر گامای فازی با مقادیر 7/0، 8/0، 9/0 تهیه شدند. نقشه های به دست آمده در 5 کلاس بسیار زیاد، زیاد، متوسط، کم و بسیار کم طبقه بندی شدند. نتایج حاصل از جمع کیفی نشان داد که عملگر گامای 9/0 فازی در مقایسه با دیگر عملگرهای فازی مناسب تر است. تحلیل نقشه های طبقه بندی شده نشان داد که 56/21 درصد از مساحت منطقه در پهنه با خطر زیاد و 24/43 درصد از مساحت منطقه در پهنه با خطر کم قرار گرفته است. در مجموع، می توان گفت که بخشی از مناطق مرکزی و شمال غربی منطقه در معرض خطر بالا قرار گرفته و مناطق غربی و شرقی حوضه در پهنه خطر متوسط تا پایین می باشند.
بررسی ارتباط عوامل موثر بر وقوع زمین لغزش در مدل آنتروپی شانون با دو ریکرد WOE و LNRF به منظور پهنه بندی حساسیت زمین لغزش در حوضه آبخیز زیوه(مقاله علمی وزارت علوم)
حوزههای تخصصی:
مستلزم برنامه ریزی، انجام اقدامات مناسب و زیربنای اصلی تهیه نقشه هایی با صحت و دقت بالا در مدیریت زمین لغزش ها شناسایی عوامل موثر در وقوع زمین لغزش ها می باشد. در این مطالعه هدف اصلی بررسی ارتباط بین عوامل موثر شناسایی شده با استفاده از مدل آنتروپی شانون و مقایسه آن با نتایج مدل های WOE و LNRF در حوضه آبخیز زیوه ارومیه می باشد. بعد از ثبت تعداد 167 زمین لغزش، مهمترین عوامل موثر با توجه به مطالعه پژوهش های قبلی و مشاهدات و بازدیدهای مکرر صحرایی در سه طبقه شاخص های مورفومتری، عوامل محیطی و انسانی دسته بندی شدند. نقشه های عوامل محیطی و انسانی در محیط ArcGIS10.5 و نقشه شاخص های ژئومورفومتری در SAGA_GIS.6.4 از طریق مدل رقومی ارتفاعی با پیکسل سایز (5/12*5/12) تهیه شد. نتایج نشان داد که مهترین عوامل موثر بر وقوع زمین لغزش در مدل آنتروپی شانون به ترتیب فاصله از آبراهه، شاخص موقعیت توپوگرافی، فاصله از گسل و کاربری اراضی و کمترین اثر عوامل موثر بر وقوع زمین لغزش به ترتیب شامل عوامل بارندگی، ارتفاع و فاکتور LS بوده است. در مدل های WOE و LNRF مهمترین زیر عامل های موثر در رده های عوامل سنگ-شناسی و کاربری اراضی، شاخص خیسی توپوگرافی، فاصله از آبراهه و گسل بوده است. بنابراین بین نتایج مدل آنترپی شانون در شناسایی عوامل موثر با نتایج مدل های فوق می توان گفت که ارتباط خوبی وجود دارد. ارزیابی مدل ها با استفاده از منحنی ROC نشان دادکه مدل آنتروپی شانون دارای عملکرد عالی و دو مدل LNRF و WOE دارای عملکرد خوب و خیلی خوب در پهنه بندی حساسیت زمین لغزش ها می باشند.
مدل سازی و روندیابی سیلاب در حوزه های فاقد آمار (مطالعه موردی؛ آبخیز تمر، استان گلستان)(مقاله علمی وزارت علوم)
حوزههای تخصصی:
در این تحقیق هیدروگراف رواناب مستقیم آبخیز تمر در شرق استان گلستان با مساحتی در حدود 1515 کیومترمربع به کمک خصوصیات فیزیوگرافی و تابع توزیع گاما مدل سازی شده است. پس از تقسیم منطقه مورد مطالعه به واحدهای هیدرولوژیک و محاسبه پارامترهای مورد نیاز در شبیه سازی جریان، فرایند بارش-رواناب در هر واحد هیدرولوژیک مدل سازی شده و جریان حاصل با استفاده از روش هیدرولوژیک ماسکینگام در بازه های عبوری از زیرحوزه ها روندیابی شد. سپس با در نظر گرفتن موقعیت زیرحوزه ها و تاخیر جریان، هیدروگراف سیلاب در تعداد هشت رگبار مدل سازی شد. نتایج مقایسه هیدروگراف های برآوردی و مشاهداتی با مقادیر میانگین معیارهای ضریب تبیین (60%)، و شاخص توافق (74%) نشان داد که روش مورد استفاده در مدل سازی هیدروگراف های سیلاب، دارای دقت قابل قبولی است. بر اساس نتایج تحقیق، با توجه به امکان استفاده از پارامترهای سهل الوصول و خصوصیات فیزیوگرافی آبخیز به عنوان رویکرد مناسبی در مدل سازی سیلاب، بررسی بیش تر ارتباط میان خصوصیات آبخیز و هیدروگراف سیلاب در مطالعات آتی پیشنهاد می شود. روش تجزیه و تحلیل و مدل سازی سیلاب با استفاده از توزیع گاما در این تحقیق می تواند ابزار موثری در برنامه های مدیریت سیل، خصوصاً در آبخیزهایی با محدودیت داده های مشاهداتی باشد. هم چنین مشخص شد که نتایج مدل در برآورد هیدروگراف های رواناب مستقیم به تغییرات مقادیر پارامترهایی که در تخمین آن ها عدم قطعیت وجود دارد، بستگی دارد. بنابراین مطالعات بیش تری در خصوص روش های محاسبه پارامترهای ورودی مورد نیاز مدل سازی هیدرولوژیک ضروری است.
بررسی تراز آب زیرزمینی و شبیه سازی سناریوهای پیش بینی در حوضه آبریز پریشان(مقاله علمی وزارت علوم)
حوزههای تخصصی:
برداشت بی رویه از سفره های آب زیرزمینی در کشور سبب افت شدید سطح ایستابی آبخوان و از بین رفتن لایه های آبدار زمین گردیده است. در این پژوهش به منظور بررسی وضعیت تراز آب زیرزمینی حوضه آبریز پریشان ، واقع در استان فارس در رابطه با برداشت بی رویه آب های زیرزمینی از داده های 33 حلقه چاه پیزومتری در بازه زمانی (2008- 2020) با استفاده از مدل Modflow شبیه سازی انجام گرفت. هم چنین نتایج حاصل از محاسبه بیلان آبی تعداد960 حلقه چاه بهره برداری در حوضه حاکی از آن است که میزان13 متر کاهش سطح تراز آب زیرزمینی در سطح حوضه پریشان اتفاق افتاده است و جمعا میزان 42.4 میلیون مترمکعب آب از ذخیره ثابت آبخوان در بازه 10 ساله کاسته شده است. با توجه به نقشه های درون یابی تهیه شده بیشترین میزان افت آب زیرزمینی مربوط به مناطق پریشان و فامور اتفاق افتاده است. از این رو با آمار سازمان آب منطقه ای فارس مبنی بر وجود چاه هایی با آبدهی بالا در این مناطق هماهنگی دارد. با استناد به نقشه های تهیه شده از آبخوان پریشان با توجه به آبرفتی بودن سفره آب زیرزمینی اثر افت سطح آب را می توان با فاصله مکانی کم مشاهده کرد. از سوی دیگر در نقشه های میان یابی ضریب پارامتر هدایت هیدرولیکی بیان کننده این است که میزان افت تراز آبخوان در مناطق پریشان و ملااره، فامور دارای بیشترین مقدار می باشد که با 11درصد خطای نسبی مؤید مدل سازی مناسب است.
شاخص ژئومورفودایورسیتی: کمی کردن تنوع چشم انداز طبیعی و لندفرم های کوهستان میشو، شمال غرب ایران(مقاله علمی وزارت علوم)
حوزههای تخصصی:
ارزیابی ژئودایورسیتی یکی از مراحل اولیه و اصلی در توسعه اقدامات حفاظت از زمین است. این پژوهش سعی دارد معیاری را برای اندازه گیری تنوع ژئومورفولوژیکی در کوهستان میشو به کار برده و اندازه بگیرد. هدف مطالعه حاضر ارزیابی کمی تنوع زمینی توده کوهستانی است که از شدت نمایان بودن مورد اغفال است. پارامترهای مورد استفاده در بررسی عبارت است از: تنوع تراکم زهکشی، تنوع زمین شناسی، تنوع طبقه بندی لندفرم، تنوع وضعیت شیب، تنوع شدت ناهمواری. نتایج پژوهش حاضر نشان داد دامنه ژئومورفودایورسیتی منطقه مورد مطالعه از سمت قله ها به سمت دشت کاهش می یابد و مناطق دارای ارزش ژئومورفودایورسیتی کم در دشت واقع شده است. همچنین کم ترین تنوع(V1) متشکل از نهشته های کواترنری است و بیشترین تنوع (V4وV5) از تشکیلات کربناتی، توده های نفوذی و ترکیبات آتشفشانی تشکیل شده است . مقادیر بالای تنوع در عامل زمین شناسی مربوط به بستر زمین شناسی مقاوم در برابر فرسایش ( مانند ترکیبات آتشفشانی و توده های نفوذی) و کم ترین مقادیر تنوع نیز مربوط به نهشته های دوره کواترنر در امتداد دره ها و دشت ها است. نتایج از طریق مقایسه با نقشه ژئومورفولوژی و کنترل میدانی اعتبار سنجی شده است. نقشه تولید شده برای ارزیابی مرحله اول ژئومورفودایورسیتی هر منطقه ساده و مفید است. این نقشه ها می توانند در ارزیابی میراث زمین مناطق طبیعی و همچنین در مدیریت و حراست از آن که در مرحله آخر به نفع ژئوتوریسم خواهد بود، کمک کند. واژگان کلیدی: ژئومورفودایورسیتی، GMI، کمی سازی تنوع زمینی، کوهستان میشو، شمال غرب ایران.
نقش عوامل انسانی در ناتعادلی های ژئومورفیک رودخانه کردان با بهره گیری از تصاویر ماهواره ای و نرم افزار HEC_RAS(مقاله علمی وزارت علوم)
حوزههای تخصصی:
رودخانه کردان یکی از رودخانه های دائمی استان البرز و شهرستان ساوجبلاغ است که در نتیجه دخالت های عوامل انسانی به یک رودخانه فصلی و سیلابی تیدیل شده است. در این پژوهش سعی بر آن بوده که نقش عوامل انسانی بر وقوع سیلاب با استفاده از تصاویر ماهواره ای و نرم افزار HEC-RAS مورد بررسی قرار گیرد. داده های مورد نیاز شامل نقشه های ماهواره ای، نقشه های توپوگرافی 1:2000 و داده های هیدرومتری می باشد.جهت تجزیه و تحلیل نتایج نیز از نرم افزار هک راس استفاده شد. نتایج به دست آمده نشان می دهد که بخش زیادی از اراضی اطراف رودخانه در نتیجه تغییرات کاربری اراضی به واحد های صنعتی و مناطق مسکونی تبدیل شده اند،. بنابر نتایج مدل هک راس در صورت وقوع سیلاب با دوره بازگشت 2 تا 5 سال خطری متوجه اراضی و سازه های اطراف رودخانه نمی باشد، اما در صورت وقوع سیلاب های با دوره بازگشت 10، 25، 50، 100، 200، 500 و 1000سال به ترتیب 8، 17 ، 25، 32، 41، 53 و 64 هکتار از اراضی مسکونی، صنعتی و بایر اطراف رودخانه در معرض هجوم سیلاب قرار گرفته و به زیر آب خواهند رفت. همچنین عرض پهنه های سیل گیر برای دوره بازگشت 2 تا 10 ساله 278 متر، 25 تا 100 ساله 355 متر و 200 تا 1000 ساله 473 متر محاسبه شد.
تعیین مناطق مستعد فرسایش خندقی با استفاده از تابع عضویت فازی(مطالعه موردی:شهر مهر در جنوب استان فارس)(مقاله علمی وزارت علوم)
حوزههای تخصصی:
فرسایش خندقی از انواع فرسایش آبی است که رخداد و گسترش آن موجب تغییرات بارز در منظر زمین و پسرفت اراضی و تخریب محیط زیست می شود. این نوع فرسایش با توجه به ابعاد نسبتا وسیع، توسعه سریع و تولید رسوب، سبب تخریب گسترده اراضی می گردد. برای کنترل این پدیده شناخت مکان هایی که مستعد ایجاد این نوع فرسایش هستند، بسیار مهم می باشد. با توجه به اهمیت موضوع هدف از این مطالعه تعیین مناطق مستعد فرسایش خندقی شهر مهر در جنوب استان فارس با استفاده از توابع عضویت فازی و مدل تحلیل سلسله مراتبی می باشد. برای این منظور ابتدا با استفاده از توابع عضویت، نقشه های فازی برای هر یک از پارامترها تهیه شد. در ادامه با استفاده از روش AHP وزن هر یک از پارامترها به منظور تهیه نقشه نهایی مناطق مستعد فرسایش خندقی تعیین شد. نتایج حاصل از روش فازی و AHP نشان داد که مناطق واقع در مرکز (حدود 15 درصد) دارای حساسیت بیشتری نسبت به فرسایش خندقی می باشند. در انتها برای اعتبار سنجی مدل از منحنی ROC استفاده شد. نتایج نشان داد که در مناطقی که مستعد فرسایش خندقی هستند خندق های بزرگی در منطقه دیده شده است. و مقادیر AUC نزدیک به 85 بدست آمد که نشان دهنده دقت بالای مدل برای پیش بینی نواحی مستعد فرسایش خندقی می باشد.
مدل سازی تغییرات فرسایش و رسوب رودخانه سجاسرود قبل و بعد از ساخت سد گلابر با روش GCD(مقاله علمی وزارت علوم)
حوزههای تخصصی:
امروزه از داده های تصاویر ماهواره ای در زمینه های مختلف برای رصد و کشف تغییرات پدیده های مختلف ژئومورفولوژی استفاده می شود.در همین راستا با هدف تعیین و تبیین تاثیر سد گلابر بر مورفولوژی و میزان فرسایش و رسوبگذاری رودخانه سجاسرود در پایین دست، از مدل GCD استفاده گردید. داده های این مدل از طرق مختلف قابل حصول است. در این مقاله مدل های رقومی ارتفاعی سری زمانی، از تصاویر ماهواره ای استر سری L1A و L1B برای مدل GCD تهیه گردید. پس از تهیه DEM های تاریخی مورد نیاز ، مدل با سه روش حداقل سطح تشخیص ، مدل خطاهای انتشاریافته و تعیین آستانه احتمالی با استفاده از تعریف یک فاصله اطمینان توسط کاربر، در محیط نرم افزار ARCGIS و الحاقیه GCD اجرا گردید. خروجی روش های سه گانه مدل نشان داد، در تمام طول دوره مطالعه 2003تا 2019 فرایند رسوبگذاری در بستر رودخانه بر فرایند فرسایش غلبه داشته است. از طرفی بعد از بهره برداری از سد، ضمن کاهش کلی نرخ فرسایش و رسوب در پایین دست سد، خروجی مدل GCD در هر سه روش و نمودارهای رواناب سری زمانی، حاکی از کاهش معنادار میزان فرسایش در بستر رودخانه دارد. با کاهش قدرت حمل بار رسوب و فرسایش رودخانه در بخشهایی از مسیرش با جابجایی و افزایش عمق مواجه شده است. .همچنین میانگین درصد تغییرات اختلاف حجم خالص در رودخانه از 19/0 درصد قبل از ساخت سد تا 50/0 درصد بعد از ساخت سد برای مدل های مختلف در نوسان است.
ارزیابی تغییرات کاربری اراضی و اثرات آن بر فرسایش خاک در حوضه بالادست سد یامچی اردبیل، با استفاده از الگوریتم تصمیم گیری چند معیاره ARAS و روش های نوین سنجش از دور(مقاله علمی وزارت علوم)
حوزههای تخصصی:
تغییرات کاربری اراضی، یکی از عوامل مهم در ایجاد فرسایش خاک است و در سال های اخیر، تاثیر متقابل تغییر کاربری اراضی و فرسایش خاک به یک نگرانی عمده زیست محیطی تبدیل شده است. از این رو، هدف پژوهش حاضر، بررسی تغییرات کاربری های مختلف و ارزیابی اثرات تغییرات کاربری ها بر فرسایش خاک، در حوضه بالادست سد یامچی، می باشد. در راستای دستیابی به اهداف پژوهش، ابتدا نقشه کاربری اراضی با استفاده از روش شی گرا برای دو دوره-ی 2000 و 2021، تهیه شده است. در مرحله بعد لایه های اطلاعاتی سایر عوامل مؤثر برای فرسایش خاک حوضه در محیط GIS تهیه گردید. ارزش گذاری و استاندارد سازی لایه ها با استفاده از تابع عضویت فازی و وزن دهی معیار ها، با بهره گیری از روش CRITIC انجام شد. تحلیل و مدل سازی نهایی با استفاده از الگوریتم چند معیاره ARAS، صورت پذیرفت. نتایج این پژوهش نشان داد، بیشترین میزان مساحت در سال 2000 مربوط به مراتع خوب و متوسط، به ترتیب با 42/237 و 27/137 کیلومتر مربع و در سال 2021، مربوط به مراتع ضعیف و خوب به ترتیب با 98/199 و 98/109 کیلومتر مربع می باشد. با توجه به نقشه پهنه بندی فرسایش سال 2000 به ترتیب 65/10 و 59/29 درصد و طبق پهنه بندی فرسایش 2021 به ترتیب 37/11 و 52/31 درصد از مساحت شهرستان در دو طبقه بسیار پرخطر و پرخطر قرار دارند. به طور کلی می توان گفت، عمده دلایل افزایش مقدار فرسایش در سطج حوضه مورد مطالعه، افزایش اراضی زراعی (دیم و آبی)، اراضی بایر، مراتع ضعیف و نواحی انسان ساخت و کاهش سطح مراتع خوب و متوسط می باشد.
تحلیل ریخت شناسی رودخانه مِرِگ ماهیدشت(مقاله علمی وزارت علوم)
منبع:
هیدروژئومورفولوژی سال ۹ پاییز ۱۴۰۱ شماره ۳۲
62 - 43
حوزههای تخصصی:
رودخانه ها از نظر شکل کانال و میزان پویایی بسیار متعددند با توجه به ویژگی های فیزیکی مشترک قابل طبقه بندی هستند روش طبقه بندی راسگن پایداری نسبی انواع رودهای مختلف را با استفاده از روابط رسوب و هیدرولیک مورد بررسی قرار می دهد. در این پژوهش به بررسی رفتار ریخت شناسی رودخانه مِرِگ (ماهیدشت) با استفاده از روش تجربی راسگن پرداخته شده است در ابتدا جهت استخراج متغیرهای ریخت شناسی مجرا از قبیل شاخص گودافتادگی، نسبت عرض به عمق، ضریب خمیدگی، شیب کانال، در محیط نرم افزار HEC-RAS(ورژن 5.0.7) استخراج و مواد بستر حاصل بررسی های میدانی گردآوری شد. با توجه به تفاوت شیب رودخانه مِرِگ به چهار بازه تقسیم گردید میزان ضریب خمیدگی و شعاع انحنا در محیط GIS (ورژن 10.5) برای هر بخش محاسبه شد. جهت محاسبه رودخانه در سطح II راسگن 44 مقطع عرضی مورد بررسی قرار گرفت. نتایج نشان می دهد که رودخانه مِرِگ در بازه ی اول در رده F6، در بازه ی دوم و سوم در رده C6 و در بازه ی چهارم رودخانه در رده B6 قرار گرفته است. مقاطع قرار گرفته در رده F6، میزان شیب بستر زیاد، شاخص گودافتادگی کم و دشت سیلابی کمتر توسعه یافته است و پتانسل فرسایش کناره خیلی زیاد بوده است. در مقاطع رده C6 میزان شیب کاهش یافته است علاوه بر آن شاخص گودافتادگی افزایش یافته و دشت سیلابی گسترش پیدا کرده است و تاثیر کنترلی پوشش گیاهی در ثبات دامنه خیلی زیاد است. مقاطع دارای رده B6، میزان شیب کمتر از سایر بازه ها است، شاخص گودافتادگی متوسط و در نهایت پتانسیل فرسایش کناره کم بوده است. بنابراین الگوهای مجرای رودخانه مِرِگ (ماهیدشت) و به تبع آن متغیرهای مؤثر در طبقه بندی و تفکیک مجراها درغالب مقاطع با مدل راسگن مطابقت دارند.
ارزیابی ناهمگونی فضایی شاخص آشفتگی هیدرورسوب شناسی در زیرحوضه های سامیان(مقاله علمی وزارت علوم)
منبع:
هیدروژئومورفولوژی سال ۹ تابستان ۱۴۰۱ شماره ۳۱
136 - 117
حوزههای تخصصی:
شاخص های بوم شناختی به ابزارهای مهمی برای ارزیابی و پایش منابع طبیعی تبدیل شده اند که درک رابطه بین فعالیت های زیست شناسی و واکنش بوم شناختی برای ساختار آن ها ضروری است. از طرفی، فعالیت های انسانی از طریق تغییرات در تولید رسوب، انتقال و ذخیره سازی تأثیرات قابل توجهی بر تکامل چشم انداز دارند. لذا این امر در مدیریت جامع نگر حوضه ها و اکوسیستم های مختلف بایستی مورد توجه قرار گیرد. بر همین اساس، پژوهش حاضر با هدف ارزیابی ناهمگونی فضایی شاخص آشفتگی هیدرورسوب شناسی (HSDI) در زیرحوضه های سامیان واقع در بخش مرکزی استان اردبیل انجام شد. بدین منظور، ابتدا عوامل انتقال رسوب (ST)، تنش هیدرولوژیکی (HS)، تغذیه آب زیرزمینی (Rec) و پتانسیل فرسایش خاک (SEP) برای 27 زیرحوضه مختلف مورد مطالعه محاسبه شد. در ادامه، وزن دهی این عوامل با استفاده از روش آنتروپی شانون صورت گرفت. سپس با استفاده از میانگین وزنی شاخص آشفتگی هیدرورسوب شناسی (HSDI) محاسبه و پهنه بندی شد. نتایج نشان داد که مقادیر متوسط، حداکثر و حداقل مقدار شاخص HSDI در حوضه سامیان به ترتیب برابر 17/10، 67/45 و 20/0 بوده است. هم چنین، طبق نتایج به ترتیب 67/87، 33/5، 32/5 و 68/1 درصد از مساحت حوضه در طبقات خیلی کم، کم، متوسط و زیاد از سطح آشفتگی دسته بندی شد. زیرحوضه 19 واقع در بخش شمالی، و زیرحوضه های 20 و 21 واقع در بخش مرکزی حوضه سامیان دارای بیش ترین آشفتگی هستند، لذا برای انجام اقدامات مدیریتی در اولویت قرار می گیرند. چارچوب پژوهش حاضر به عنوان ابزاری بالقوه برای حمایت از تصمیماتی که باید بر بهبود مدیریت منابع طبیعی متمرکز باشد، قابلیت کاربرد دارند.
بررسی شبکه آبراهه های حوضه آبریز رامهرمز با استفاده از مدل توکوناگا و بعدفرکتال همبستگی(مقاله علمی وزارت علوم)
منبع:
هیدروژئومورفولوژی سال ۹ زمستان ۱۴۰۱ شماره ۳۳
20 - 1
حوزههای تخصصی:
در دیدگاه رفتارهای فرکتالی، ویژگی همانندسازی در طول زمان الگوهایی را در بستر حوضه به وجود می آورند که بنا بر ویژگی های زایشی و چگونگی تحولات، عملکرد منحصر به فردی را در طی بلوغ یک حوضه آبریز به نمایش می گذارند. به همین دلیل در این پژوهش با هدف بررسی انشعاب شبکه های آبراهه ای حوضه رامهرمز از مدل توکوناگا و بعدفرکتال همبستگی استفاده شده است. رودخانه رامهرمز از زیرحوضه های حوضه آبریز جراحی واقع در جنوب غربی کشور می باشد که از 50 کیلومتری جنوب شرق ایذه سرچشمه گرفته و به سوی جنوب غرب سرازیر می گردد. در این پژوهش شبکه های رودخانه با استفاده از نرم افزار Arc GIS استخراج شده و سپس داده های ورودی برای محاسبه عدد فرکتالی دو بعدی به کمک تابع همبستگی وارد نرم افزار گردید. در این راستا ابتدا حوضه رامهرمز را به دو بخش شرقی و غربی تقسیم نموده و در ادامه با استفاده از روش توکوناگا، شبکه نامنظم و منحنی رودخانه رامهرمز به شکل منظم، هندسی و درختی منتناظر ترسیم شده است. با توجه به طول شاخه ها، بعد فرکتالی برای هر دو بخش حوضه رامهرمز محاسبه گردید. بعد فرکتالی همبستگی حوضه رامهرمز و بخش های شرقی و غربی آن بین (42/1 تا 68/1) با ضریب همبستگی بالا برآورد گردیده است. بعد فرکتال محاسبه شده معرف نسبت انشعاب متوسط و مدت زمان اندک برای رسیدن به جریان دائمی است که بیانگر رفتار آشوبناکی نسبتاً بالای حوضه و بخش های آن می باشد.
تولید هیدروگراف واحد مصنوعی بر پایه ویژگی های ﻓﺮاکﺘﺎﻟی حوضه ی رودخانه ای (مطالعه ی موردی : حوضه ی کلان ملایر همدان)(مقاله علمی وزارت علوم)
حوزههای تخصصی:
یکی از روشهای کمی و تجربی در بررسی روابط اشکال مربوط به شبکه زهکشی و هیدروگراف استفاده از بعد فراکتال است هدف یافتن روابطی برای زمان تمرکز بر اساس بعد فراکتال با تولید هیدروگراف واحد مثلثی فراکتالی در زیر حوضه های رودخانه کلان ملایر است . بر این اساس، تمام زیر حوضه ها و آبراهه های حوضه با استفاده از نرم افزار GIS ARC تفکیک و با الگوریتم شمارش جعبه ای آنالیز و پردازش تصویر شدند. سپس با برازش منحنی بعد فراکتال حوضه با زمان تمرکز محاسباتی به روش کرپیچ ، زمان تمرکز جدید با توجه به بعد فراکتال به دست آمد. در نهایت با استفاده از زمان تمرکز جدید هیدروگراف واحد مثلثی فراکتالی تولید و مقایسه شدند بررسی و مقایسه هیدروگراف واحد NRCS و هیدروگراف واحد فراکتالی در زیر حوضه های 8 گانه حوضه سد کلان نشان می دهد که به جز زیر حوضه هایی که رده آبراهه پایینی دارند، مانند زیر حوضه (B ) و (E ) به ترتیب با مقدار RMSE 98/0 و 96/0 و در صد خطای دبی پیک 83/33 و 48/17 هیدروگراف ها انطباق خوبی با هم دارند. به صورتی که در برخی زیر حوضه ها نمودار ها ی بعد فراکتال و هیدروگراف NRCS کاملأ منطبق بوده و بین بعد فراکتال و هیدروگراف NRCS و مشاهداتی تطابق قابل قبولی وجود دارد . نتایج نشان می دهد که هر چه اختلاف ارتفاع حوضه بیشتر باشد تطابق هیدروگراف واحد NRCS و هیدروگراف واحد مثلثی کمتر است بررسی ها نشان می دهد که هیدروگراف های فراکتال در تمام زیر حوضه ها زمان تمرکز را نسبت به شبکه هیدروگرافی اصلاح نموده است . پیشنهاد می شود که هیدروگراف واحد فراکتالی با سایر پارامتر های هیدروژئومورفولوژیکی مانند ضریب شکل حوضه ، انجام و با هیدروگراف HEC–HMS بررسی شود.
تعیین آستانه بارش بحرانی در وقوع زمین لغزش های سطحی بر اساس مدل فرایند محور (مطالعه موردی: منطقه ی جوانرود ،استان کرمانشاه)(مقاله علمی وزارت علوم)
منبع:
پژوهش های ژئومورفولوژی کمی سال دهم بهار ۱۴۰۱ شماره ۴ (پیاپی ۴۰)
156 - 177
حوزههای تخصصی:
بروز پدیده زمین لغزش می تواند ناشی از عوامل متعدد زمین شناسی، ژئومورفولوژیکی، هیدرولوژیکی، بیولوژیکی و انسانی باشد. باوجوداین، نقش اساسی در شروع زمین لغزش را عمدتاً عاملی ماشه ای ایفا می کند. بارندگی، به عنوان متداول ترین عامل ماشه ای وقوع زمین لغزش ها شناخته شده است. هدف این تحقیق تعیین بارش بحرانی در وقوع لغزش های کم عمق منطقه ی جوانرود با استفاده از مدل فرایند محور ( فیزیک پایه) Talebi 2008 می باشد این مدل با درنظرگرفتن پلان دامنه (همگرا، واگرا و موازی)، پروفیل طولی دامنه (محدب، مقعر، مستقیم)، هیدرولوژی زیرسطحی همراه با ویژگی های مکانیکی خاک، ضریب پایداری دامنه ها را مورد تجزیه وتحلیل قرار می دهد. آنگاه با توجه به ضریب پایداری محاسبه شده به تعیین بارش بحرانی برای دامنه های مطالعاتی پرداخته می شود. برای دستیابی به هدف موردنظر، 12 دامنه شامل 7 دامنه لغزشی و 5 دامنه فاقد لغزش به عنوان نمونه مطالعاتی در منطقه جوانرود انتخاب شدند و سپس تمامی متغیرهای تحلیل پایداری شیب با استفاده از مطالعات میدانی، آزمایشگاهی و تجزیه وتحلیل توپوگرافی دامنه ها استخراج شد و ضریب پایداری برای هر دامنه محاسبه گردید. سپس با استفاده از روش معکوس کاهش ضریب اطمینان تا حد ناپایداری یک به تعیین بارش بحرانی برای دامنه های مطالعاتی پرداخته شد. نتایج حاصل از میزان ضریب پایداری به دست آمده و بارش های بحرانی دامنه های مطالعاتی حاکی از کارایی مناسب این مدل ها جهت تعیین بارش بحرانی می باشد. به طوری که در منطقه جوانرود دامنه های مستعد لغزش برای ناپایدار شدن، بارش بحرانی کمتری نسبت به دامنه های پایدار نیازمندند. مطابق محاسبات به دست آمده میزان بارش بحرانی برای دامنه های ناپایدار کمتر از 50 میلی متر و برای دامنه های پایدار بیش از 100 میلی متر در روز می باشد.