مدلی برای تشخیص ادعاهای غیر عادی خسارت در بیمه کشاورزی با استفاده از یادگیری عمیق (مقاله علمی وزارت علوم)
درجه علمی: نشریه علمی (وزارت علوم)
آرشیو
چکیده
موارد کلاهبرداری در سال های اخیر به ویژه در زمینه های مهم و حساس مالی و بیمه ای افزایش یافته است. از این رو، برای مقابله با این گونه کلاهبرداری ها نیاز به اقدامات متفاوتی نسبت به روش های بازرسی سنتی وجود دارد. بیمه کشاورزی نیز با توجه به ماهیت و گستردگی وسیع آن از این تهدید مستثنا نبوده و سالانه هزینه های زیادی صرف پرداخت به خسارت های ساختگی می شود. این پژوهش با هدف ارائه مدلی برای کشف ادعاهای خسارت غیرواقعی در بیمه کشاورزی با بکارگیری تکنیک های داده کاوی و یادگیری ماشین ارائه شد. برای ساخت مدل یادگیری عمیق مورد استفاده قرار گرفت. داده های مورد استفاده از صندوق بیمه کشاورزی اخذ شد و مربوط به بیمه نامه های گندم آبی و دیم استان خوزستان بود که در سال زراعی 1399-1398 برای آنها غرامت پرداخت شده بود. بعد از آماده سازی و پیش پردازش داده ها، با استفاده از یادگیری عمیق نسبت به کشف موارد غیرعادی اقدام و نتایج توسط کارشناسان صندوق بیمه کشاورزی مورد ارزیابی قرار گرفت. بعد از تحلیل نتایج مشخص شد یک درصد از خسارت های پرداختی مربوط به درخواست های غیرواقعی بوده و در پرداخت خسارت بایستی دقت و بررسی بیشتری انجام شود. دقت مدل در تشخیص موارد غیرعادی برای گندم آبی و دیم به ترتیب برابر با 53/53 و 63/37 درصد بدست آمد. در بررسی نتایج مشخص شد 5 دسته رفتار غیرعادی منجر به پرداخت خسارت غیرواقعی شده اند که رفتار عدم ارائه مستندات خسارت فراوانی بیشتری نسبت به بقیه داشت.A model for detecting abnormal claims in crop insurance using deep learning
Fraud cases have increased in recent years, especially in important and sensitive financial and insurance fields. Therefore, to deal with such frauds, there is a need for different measures than traditional inspection methods. Agricultural insurance is also not exempted from this threat due to its nature and wide extent and every year a lot of money is spent on paying fake damages. This research was presented with the aim of providing a model to discover unrealistic damage claims in agricultural insurance by using data mining and machine learning techniques. It was used to build a deep learning model. The data used was obtained from the Agricultural Insurance Fund and related to wet and rainfed wheat insurance policies of Khuzestan province, for which compensation was paid in the 2018-2019 crop year. After preparing and preprocessing the data, using deep learning to discover unusual cases, the action and results were evaluated by the experts of the Agricultural Insurance Fund. After analyzing the results, it was found that 1% of the damages paid were related to unrealistic requests and more care should be taken in paying the damages. The accuracy of the model in detecting unusual cases for wet and dry wheat was 53.53 and 63.37 percent, respectively. In the review of the results, it was found that 5 categories of unusual behavior have led to the payment of unrealistic damages, and the behavior of not providing damage documentation was more frequent than the others.