فیلتر های جستجو:
فیلتری انتخاب نشده است.
نمایش ۲٬۷۲۱ تا ۲٬۷۴۰ مورد از کل ۲٬۷۹۴ مورد.
حوزه های تخصصی:
The article proposes a methodical approach to assessing the competitiveness of enterprises in the logistics infrastructure of the Black Sea region in the context of the strategy of the development of the Black Sea. The article is presented is the author's interpretation of the steel development of the territory and injected into the logistic infrastructure. It was proposed of the methodical approach to assessing the competitiveness of enterprises-moving enterprises in the development of the territory, as one of the stages of the methodology for assessing the development of the territory in the region. It have been identified Indicators for assessing sustainable development in assessing the competitiveness of key enterprises in the region and in terms of using the TOPSIS model. The application of the TOPSIS model allows to assess the value of the aggregate indicator of sustainable development of a region or territory, taking into account the impact of the level of competitiveness of its key enterprises. In the context of this approach, it is studied and evaluated the level of competitiveness of powerful enterprises of the Black Sea region, which form the logistics infrastructure of the region. It was determined their influence on the strategy of sustainable development of the territory. This approach allowed to expand the methodology for assessing the assessment of sustainable development of the territory through the methodology of assessing the competitiveness of enterprises-engines of development of the territory, as one of the stages of the overall methodology.
Estimating the Parameters for Linking Unstandardized References with the Matrix Comparator(مقاله علمی وزارت علوم)
حوزه های تخصصی:
This paper discusses recent research on methods for estimating configuration parameters for the Matrix Comparator used for linking unstandardized or heterogeneously standardized references. The matrix comparator computes the aggregate similarity between the tokens (words) in a pair of references. The two most critical parameters for the matrix comparator for obtaining the best linking results are the value of the similarity threshold and the list of stop words to exclude from the comparison. Earlier research has shown that the standard deviation of the token frequency distribution is strongly predictive of how useful stop words will be in improving linking performance. The research results presented here demonstrate a method for using statistics from token frequency distribution to estimate the threshold value and stop word selection likely to give the best linking results. The model was made using linear regression and validated with independent datasets.
Speech Enhancement using Greedy Dictionary Learning and Sparse Recovery(مقاله علمی وزارت علوم)
حوزه های تخصصی:
Most real-time speech signals are frequently disrupted by noise such as traffic, babbling, and background noises, among other things. The goal of speech denoising is to extract the clean speech signal from as many distorted components as possible. For speech denoising, many researchers worked on sparse representation and dictionary learning algorithms. These algorithms, however, have many disadvantages, including being overcomplete, computationally expensive, and susceptible to orthogonality restrictions, as well as a lack of arithmetic precision due to the usage of double-precision. We propose a greedy technique for dictionary learning with sparse representation to overcome these concerns. In this technique, the input signal's singular value decomposition is used to exploit orthogonality, and here the ℓ1-ℓ2 norm is employed to obtain sparsity to learn the dictionary. It improves dictionary learning by overcoming the orthogonality constraint, the three-sigma rule-based number of iterations, and the overcomplete nature. And this technique has resulted in improved performance as well as reduced computing complexity. With a bit-precision of Q7 fixed-point arithmetic, this approach is also used in resource-constrained embedded systems, and the performance is considerably better than other algorithms. The greedy approach outperforms the other two in terms of SNR, Short-Time Objective Intelligibility, and computing time.
نقش تحلیل کسب وکار دانشی در مدیریت امنیت داده های رایانش ابری (نمونه پژوهش: شرکت های دانش بنیان پارک علم و فناوری دانشگاه تهران)(مقاله علمی وزارت علوم)
منبع:
مدیریت دانش سازمانی سال پنجم بهار ۱۴۰۱ شماره ۱۶
107 - 134
حوزه های تخصصی:
رایانش ابری آخرین پاسخ فناوری برای رفع نیاز انسان به محاسبات سنگین است. این پژوهش به بررسی تأثیر تجزیه وتحلیل کسب وکار دانشی بر مدیریت امنیت داده های رایانش ابری با توجه به نقش میانجی فرهنگ داده محور و عقلانیت تصمیم گیری امنیت داده های رایانش ابری پرداخته است؛ لذا پژوهش حاضر از حیث هدف یک پژوهش کاربردی بوده و از حیث گردآوری داده ها از روش توصیفی- پیمایشی استفاده شده است. جامعه آماری پژوهش حاضر، خبرگان حوزه رایانش ابری شرکت های دانش بنیان در پارک علم و فناوری تهران (دانشگاه تهران) به تعداد 135 نفر بوده است. در پژوهش حاضر به علت محدود بودن تعداد اعضای جامعه آماری (135 نفر) از روش سرشماری برای جمع آوری داده ها استفاده شده است. ابزار گردآوری داده پرسشنامه های استاندارد از وانگ و همکاران (2020)، کائو (2015)، دیلن و دمیرکان (2013)، کایرن و همکاران (2012)، کایرن و شوکلی (2011)، چانگ و لین (2007) است که پایایی و روایی آن بررسی و مورد تأیید قرار گرفت. تجزیه وتحلیل داده ها نیز در دو بخش آمار توصیفی و استنباطی انجام شد. جهت آزمون فرضیه ها و برازش مدل، از تکنیک مدل سازی معادلات ساختاری و رویکرد حداقل مربعات جزئی و نرم افزار Smart PLS2 استفاده شد. نتایج نشان داد که تجزیه وتحلیل کسب وکار دانشی بر فرهنگ داده محور و فرهنگ داده بر عقلانیت تصمیم گیری داده های رایانش ابری تأثیر مثبت و معناداری دارد. همچنین عقلانیت تصمیم گیری داده های رایانش ابری بر مدیریت امنیت داده های رایانش ابری تأثیر مثبت معنادار دارد.
Shannon Entropy as an Indicator of the Effectiveness of E-Advisory in Ukraine(مقاله علمی وزارت علوم)
حوزه های تخصصی:
The paper considers the possibilities of optimizing the search for agricultural information based on Shannon information entropy criterion. A comparison of the degree of uncertainty of information search through the Internet – search systems with similar indicators of Ukrainian agricultural websites. According to the number of hit count in Ukraine in July 2020 to the search engine, which consists of 10 sources, and to agricultural websites (43 sources) by estimating entropy, a conclusion was made about the significant degree of dispersion of agricultural information sources. It should be emphasized that the artificial division into 4 categories (AgroMedia, Agrotrade web resources, Information and advisory resources, Specialized web resources) did not improve the situation according to the degree of uncertainty compared to the search engine system. As for the entropy index, for almost all 4 categories of entropy indices (heterogeneity or diversity) is close to the case of uniform distribution, i.e., the same hit count of all possible resources (their number for all categories is approximately the same 10-11). As a result of the analysis of the potential client base of electronic consulting, it can be quantified as 4,700,000 of agricultural households and about 50,000 small and medium-sized farms. The transition to the land market is likely to lead to a substantial increase in the number of the latter. It was demonstrated that the current educational level of household owners indicates both the need to increase this indicator and the presence of a close relationship with the existing system of professional advisory in Ukraine, which operates in recent years through self-sufficiency and uncertain financial support from central and regional authorities. The existing official database of advisors should be restructured in line with the call of the times to reduce the degree of uncertainty in finding a specialist of the desired profile.
The Effect of Transitive Closure on the Calibration of Logistic Regression for Entity Resolution(مقاله علمی وزارت علوم)
حوزه های تخصصی:
This paper describes a series of experiments in using logistic regression machine learning as a method for entity resolution. From these experiments the authors concluded that when a supervised ML algorithm is trained to classify a pair of entity references as linked or not linked pair, the evaluation of the model’s performance should take into account the transitive closure of its pairwise linking decisions, not just the pairwise classifications alone. Part of the problem is that the measures of precision and recall as calculated in data mining classification algorithms such as logistic regression is different from applying these measures to entity resolution (ER) results.. As a classifier, logistic regression precision and recall measure the algorithm’s pairwise decision performance. When applied to ER, precision and recall measure how accurately the set of input references were partitioned into subsets (clusters) referencing the same entity. When applied to datasets containing more than two references, ER is a two-step process. Step One is to classify pairs of records as linked or not linked. Step Two applies transitive closure to these linked pairs to find the maximally connected subsets (clusters) of equivalent references. The precision and recall of the final ER result will generally be different from the precision and recall measures of the pairwise classifier used to power the ER process. The experiments described in the paper were performed using a well-tested set of synthetic customer data for which the correct linking is known. The best F-measure of precision and recall for the final ER result was obtained by substantially increasing the threshold of the logistic regression pairwise classifier.
طراحی سیستم خبره به منظور تحلیل رفتار مصرف انرژی کارکنان به کمک مدل سازی راف(مقاله علمی وزارت علوم)
منبع:
مدیریت فناوری اطلاعات دوره ۷ تابستان ۱۳۹۴ شماره ۲
363 - 384
حوزه های تخصصی:
شناخت رفتارهای مصرف انرژی و تغییر آنها، به دانش گسترده ای درباره محرک های رفتار و بیان این دانش به صورت برنامه های مداخله گر موفق نیاز دارد. در این مقاله، رفتار مصرف انرژی کارکنان در سازمان، به کمک مدل سازی راف بررسی شده است. به این منظور پس از انتخاب 13 مشخصه موقعیتی (شامل شاخص های جمعیتی، ارزشی، نگرشی و سازمانی کارکنان) و یک مشخصه تصمیم (رفتار مصرف انرژی روشنایی کارکنان)، سیستم اطلاعاتی راف ایجاد شد. 482 نفر از کارکنان شاغل در 37 ساختمان اداری وزارت نفت، به صورت تصادفی انتخاب شدند و مدل سازی راف برای آنها به اجرا درآمد. با تلفیق روش های مختلف گسسته سازی داده، تولید بی زائده و تولید قوانین و به کمک نرم افزار ROSETTA، نُه مجموعه قانون تولید شد. نتایج این پژوهش نشان می دهد از بین 13 مشخصه موقعیتی، چهار مشخصه شهروند سازمانی، رضایتمندی، نوع نگاه به رفتار و امکان کنترل روشنایی، اصلی ترین مشخصه های سیستم اند و در تمام بی زائده های تولیدشده، وجود داشتند. پس از اعتبارسنجی مدل های مختلف، مدل گسسته کردن دستی داده ها که بی زائده های آن به کمک الگوریتم ژنتیک و با رویکرد ORR استخراج شدند، بالاترین دقت و اعتبار را نشان دادند.
Guest Editorial: Impact of Integrated Intelligent Information and Analytical Systems on Society(مقاله علمی وزارت علوم)
حوزه های تخصصی:
The Special Issue of the Journal of Information Technology Management (JITM) is publishing very selective papers on information management, technology in higher education, integrated systems, enterprise management, cultural thoughts, strategic contributions, management information systems, and cloud computing. We received numerous papers for this special issue but after an extensive peer-review process, 10 papers were finally selected for publication. The current special issue consisted of areas viz Integrated Intelligent Systems, Analytical Systems, and Enterprise Management.
Framework for Prioritizing Solutions in Overcoming Data Quality Problems Using Analytic Hierarchy Process (AHP)(مقاله علمی وزارت علوم)
حوزه های تخصصی:
The Central Statistics Agency (BPS) is a government institution that has the authority to carry out statistical activities in the form of censuses and surveys, to produce statistical data needed by the government, the private sector and the general public, as a reference in planning, monitoring, and evaluation of development results. Therefore, providing quality statistical data is very decisive because it will have an impact on the effectiveness of decision making. This paper aims to develop a framework to determine priority of solutions in overcoming data quality problems using the Analytic Hierarchy Process (AHP). The framework is built by conducting interviews and Focus Group Discussion (FGD) on experts to get the interrelationship between problems and solutions. The model that has been built is then tested in a case study, namely the Central Jakarta Central Bureau of Statistics (BPS). The results of the study indicate that the proposed model can be used to formulate solutions to data problems in BPS.
Big Data Quality: From Content to Context(مقاله علمی وزارت علوم)
حوزه های تخصصی:
Over the last 20 years, and particularly with the advent of Big Data and analytics, the research area around Data and Information Quality (DIQ) is still a fast growing research area. There are many views and streams in DIQ research, generally aiming at improving the effectiveness of decision making in organizations. Although there are a lot of researches aimed at clarifying the role of BIG data quality for organizations, there is no comprehensive literature review that shows the main differences between traditional data quality researches and Big Data quality researches. This paper analyzed the papers published in Big data quality and find out that there is almost no new mainstream about Big Data quality. It is shown in this paper that the main concepts of data quality does not changes in Big Data context and that only some new issues have been added to this area.
The Impact of Rational Governance on the Financial Performance of Industrial Companies Sample (Pharmaceutical Companies) Listed in Amman Stock Exchange(مقاله علمی وزارت علوم)
حوزه های تخصصی:
The study aimed to determine the impact between rational governance and financial performance on a sample of pharmaceutical companies listed in the Amman Stock Exchange. The questionnaire was used to collect data, where (200) inquiries were received (170) valid for statistical analysis were excluded (10) where used in Analysis process (160) of the total questionnaires distributed and to achieve the objectives of the study the study reached the most relevant results, the presence of a statistically significant impact of disclosure and transparency on financial performance The study made the most critical recommendations: The establishment of institutions to design an effective and sound control system in order to fulfil the role for which it was found, And also work on Control continuously updated system.
Sustainable Decision-Making Model: Loyalty Points Through Email Communication With Real Option Valuation(مقاله علمی وزارت علوم)
حوزه های تخصصی:
Nowadays, many companies cannot see the digital investment that plays a main role in the IR 4.0. Therefore, this study is investigating the study of investment as plays a critical role in an analytical activity to assess the benefits and costs of an investment and can be used as an investment justification. Traditional investment appraisal uses a financial approach where the benefits and costs are quantified in a certain amount of value for money and then compared in value. Moreover, this study is revealed the fruitful outcomes because revealed the investment valuation method with NPV (Net Present Value) and ROV (Real Option Valuation). ROV is an alternative to financial valuation. Seeding from the same philosophy as Financial Option, ROV has advantages in handling the flexibility, risk, and volatility that may occur from an investment. Thus, ROV is considered more able to appreciate an investment that has these characteristics. Investment appraisal with ROV is better able to appreciate investment than traditional financial methods, as shown by ROV's NPV results in the case of marketing with Loyalty points through email communication as a digital investment that are greater than ordinary NPV. This is because ROV can appreciate flexibility in investments that have choices of investment plans in the future
ارزیابی آمادگی پذیرش شبکه های نرم افزارمحور در سفر تحول دیجیتال شرکت های تلکامی ایران
منبع:
دانشنامه تحول دیجیتال دوره دوم تابستان ۱۴۰۰ شماره ۳
73 - 87
حوزه های تخصصی:
همگام با تحول دیجیتال و ظهور فناوری های نوین مثل اینترنت اشیاء، موضوع گستردگی، چابک سازی و مدیریت زیرساخت ها و شبکه های ارتباطی نیز با رویکردهای نرم افزاری، سرویس گرایی، متن باز بودن و مجازی سازی توسعه پیدا کرده است، به طوریکه توسعه شبکه های نرم افزار محور، از ارکان اصلی سفر تحول دیجیتال شرکت های تلکامی قلمداد می شود. از این رو نیاز است صنایع تلکامی ایران، آمادگی پذیرش و مهاجرت به این فناوری را برای مدیریت شبکه های نوین و پیچیده داشته باشند. پژوهش حاضر با در نظر گرفتن اهمیت موضوع، به سؤال سطح آمادگی پذیرش شبکه های نرم افزار محور در سفر تحول دیجیتال شرکت های تلکامی ایران به چه میزان است؟ پرداخته است. داده های این پژوهش از طریق پرسشنامه از 54 متخصص خبره تحول دیجیتال تلکامی در ایران در سال 1400 فراهم شده است. برای آزمون فرضیه های پژوهش از روش تحلیل عاملی تائیدی، آزمون ویلکاکسون تک نمونه ای و آزمون فریدمن استفاده شده است. نتایج پژوهش نشان می دهد دغدغه های موجود، بیشتر در زمینه های تأمین امنیت، تأمین کنندگان و نیروی متخصص است؛ لیکن رویکرد مثبتی در پذیرش شبکه های نرم افزار محور وجود دارد. همچنین یافته های این بررسی نشان داد که توجه به منافع شبکه های نرم افزار محور در صنعت تلکام (99/5) در اولویت اول قرار داشته و عوامل اصلی به کارگیری (97/5)، تأثیرات تجاری (56/4) و موانع پذیرش (5/4) در رتبه های بعدی قرار می گیرند.
New Realities of the Enterprise Management System Information Support: Economic and Mathematical Models and Cloud Technologies(مقاله علمی وزارت علوم)
حوزه های تخصصی:
The paper focuses on the urgency of the implementation of cloud technologies, which are a necessary condition for the development of enterprise management systems, give rise to a complex of insufficiently studied phenomena and processes and determine the need to find new tools in making and implementing reasonable management decisions. In the process of research, the sequence of construction and the overall structure of the enterprise management system, based on the use of cloud technologies, are determined, which allowed to build a mathematical model for calculating the probability of making an error-free decision, evaluating the efficiency of decision-making, a model of making a management decision for a certain time with the parallel method of operation of elements of the enterprise management system.
اولویت بندی گزینه های سرمایه نامشهود در تدوین مزیت رقابتی از طریق فرایند تحلیل شبکه ای (مطالعه موردی: شرکت های خصوصی در حوزه فناوری اطلاعات)(مقاله علمی وزارت علوم)
منبع:
مدیریت فناوری اطلاعات دوره ۹ پاییز ۱۳۹۶ شماره ۳
449 - 476
حوزه های تخصصی:
هدف از پژوهش حاضر، شناسایی و رتبه بندی مؤثرترین گزینه ها برای خلق مزیت رقابتی پایدار شرکت های فناوری اطلاعات در ایران است. در این پژوهش به کمک خبرگانِ سه شرکت مطرح فناوری اطلاعات در این حوزه، مهم ترین سرمایه های نامشهودی (سرمایه فکری، سرمایه اجتماعی و سرمایه معنوی) که در تدوین مزیت رقابتی برای شرکت های فناوری اطلاعات نقش مهمی دارند، شناسایی و رتبه بندی شدند. با مطالعه ادبیات و ایجاد پنل خبرگی، برای سه گزینه سرمایه فکری، سرمایه اجتماعی و سرمایه معنوی، در مجموع 16 زیرگزینه استخراج گردید. برای مزیت رقابتی نیز پنج معیار قیمت، پشتیبانی، طراحی، تصویر و کیفیت در نظر گرفته شد که رتبه بندی گزینه ها بر اساس این معیارها، از طریق فرایند تحلیل شبکه ای صورت پذیرفت. نتایج فرایند تحلیل شبکه ای نشان داد سرمایه فکری در مقایسه با سرمایه اجتماعی و سرمایه معنوی در خلق مزیت رقابتی در شرکت های فناوری اطلاعات، نقش مهم تری دارد. همچنین در رتبه بندی زیرگزینه ها، سرمایه انسانی بالاترین رتبه را در کسب مزیت رقابتی در این حوزه به دست آورد. عنصر رابطه ای، چشم انداز محوری/ ارزش محوری و سرمایه رابطه ای/ مشتری، در رتبه های بعدی اهمیت در تدوین مزیت رقابتی پایدار قرار گرفتند.
Design, Realization and Measurements of Printed Patch Antenna with Circular Slots for UWB and IoT Applications(مقاله علمی وزارت علوم)
حوزه های تخصصی:
This paper presents the design, simulation and realization of a patch antenna for IOT applications. The patch antenna consists of a radiating element printed on one face of a dielectric substrate, when the ground plane is placed on the other face. In this work, two techniques are used to design a miniaturized patch antenna: the set-up of slots on the radiating element and the use of defective ground plane. Also, the slot’s radius and Length of inset point effects on the performances of the antenna is illustrated. All the simulated results are performed with FEKO, a solver based on a Moments Method and measurement is made using Vector Network Analyzer Anritsu MS2026C. The propose antenna resonates in three frequency bands 3.91, 4.86 and 5.16GHz for different characteristics such as radiation pattern, gain, return loss, which makes it suitable for many wireless communication applications such as IoT applications.
Computer Modeling of the Economy Dynamics of Ukraine, Taking into Account the Socio-Economic Clustering of Society(مقاله علمی وزارت علوم)
حوزه های تخصصی:
The object of the research is the economic dynamic of a depressed low-productive economy, as exemplified by the modern Ukrainian economy. With the purpose to analyze the main causes and consequences of such an economy, the characteristic tendencies of its functioning, activation of the processes of reformation and growth, there was developed the dynamic economic model with significant share of consumer import and export of raw materials, with the use of IT technology. The model also takes into account the socio-economic clustering of a society. It is formalized in the space of economic variables, which describes respectively the savings (liquid capital) of the main social groups involved in the economy, the prices of consumer products in the domestic and foreign markets, the price of exported raw materials for the exchange rate.The model is intended for qualitative analysis of the processes occurring in the economy described by it, and for conducting computational experiments on the basis of information technologies in simulation mode with its parameters, which allows to identify the most characteristic features of the object of the research. The results of experimental researches with the model allowed to establish the main periods of economic dynamics represented by the dynamic variables model, its specificity and social consequences for the society, which is characterized by a bimodal distribution of savings. There was investigation the dependence of the mode solution from it parameters which means in practice the dependence of economic dynamics from the change of individual conditions and factors of economic development.The obtained results are important for informational and analytical support of decision making processes in order to bring the being studied economy out of a low-productive state.
Application of Grouped MCDM Technique for Ranking and Selection of Laptops in the Current Scenario of COVID-19(مقاله علمی وزارت علوم)
حوزه های تخصصی:
In the modern technological age, laptops are widely used for doing various day-to-day activities and getting updates all around us. The COVID-19 situation is playing a vital role in a dynamic shift in buyer behavior with multiple personal computing devices at home. Prioritizing and selecting appropriate laptop devices is difficult because there are several options of laptops that are available in the market, and these are equipped with the latest features to do gaming, designing, attending online classes, and performing office and other everyday tasks. There are multiple selection criteria that are complex in nature. MCDM (Multiple Criteria Decision Making) approaches can handle and analyze these complicated criteria. By using MCDM techniques, decision-making can be done to select the top-ranked alternative from among the available alternatives. This paper exhibits a group of two MCDM techniques; Best Worst Method (BWM) and Analytical Hierarchy Process (AHP), which have been used to evaluate relative weights of considered conflicting criteria such as brand, price, storage capacity, RAM, processor, weight, touch screen, Bluetooth, and screen size, and these weights are used in the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) for ranking and selecting the best product of laptops.
Breast Cancer Detection based on 3-D Mammography Images using Deep Learning Strategies(مقاله علمی وزارت علوم)
حوزه های تخصصی:
In recent scenario, women are suffering from breast cancer disease across the world. Mammography is one of the important methods to detect breast cancer early; that to reduce the cost and workload of radiologists. Medical image processing is a tremendous technique used to determine the disease in advance to reduce the risk factor. To predict the disease from 2-D mammography images for diagnosing and detecting based on advanced soft computing paradigm. Still, to get more accuracy in all coordinate axes, 3-D mammography imaging is used to capture depth information from all different angles. After the reconstruction of this process, a better quality of 3D mammography is obtained. It is useful for the experts to identify the disease in well advance. To improve the accuracy of disease findings, deep convolution neural networks (CNN) can be applied for automatic feature learning, and classifier building. This work also presents a comparison of the other state of art methods used in the last decades.
Design of A Fuzzy-controlled Energy - Efficient Multicast Scheduler (FEMS) For SDWSN(مقاله علمی وزارت علوم)
منبع:
Journal of Information Technology Management , Volume ۱۳, Special Issue: Big Data Analytics and Management in Internet of Things, ۲۰۲۱
111 - 132
حوزه های تخصصی:
Multicasting is an important operation in software-defined wireless sensor networks (SDWSNs). In this operation, a group of nodes specified by their unique node identification numbers is supposed to receive the same multicast message at the approximately same time, if possible. These nodes are termed as multicast members or multicast destinations. They need not be physically close to one another to form a group. The present article proposes an energy-efficient scheduler exclusively for multicast operation in the SDWSN environment. Based on the advantages provided by underlying network architecture, a router can efficiently schedule multicast packets belonging to various multicast sessions. This promotes greenery in the network and significantly increases the packet delivery ratio. These claims are supported and justified by the experimental results presented in this paper. As far as the authors know, there is no multicast packet scheduler in the literature of wireless sensor networks or WSN. SDWSN is a more advanced version, and no multicast protocol has yet been proposed for these kinds of networks. Therefore, while designing the present fuzzy scheduler, we kept in mind all standard multicast protocols in the WSN environment.