آرشیو

آرشیو شماره ها:
۷۰

چکیده

گرم شدن محیط زیست شهری یکی از پیامدهای رشد شهری ناپایدار است. هدف این پژوهش بررسی امکان مدل سازی تاثیر پارامترهای ساختاری شهر بر دمای سطح زمین در فصل تابستان در شهر تهران است. بدین منظور، از تصویر لندست-8 اخذ شده در سال 2018 به جهت محاسبه دمای سطح زمین استفاده شده و به منظور تعیین واحدهای مطالعاتی در این پژوهش از روش قطعه بندی شی گرا بر روی تصویر سنجنده سنتینل-2 سال 2018 استفاده گردیده و میزان پوشش گیاهی، جداسازی مناطق ساخته شده از مناطق ساخته نشده از این تصاویر استخراج شده است. همچنین روش شبکه عصبی پرسپترون چند لایه و روش شبکه عصبی کانولوشن به منظور مدل سازی تاثیر پارامترهای ساختاری شهر بر دمای سطح زمین در طی فصل تابستان مورد استفاده قرار گرفته است. نتایج به دست آمده از انتخاب ویژگی به روش جنگل تصادفی برای فصل تابستان نشان می دهد که حضور پوشش گیاهی و کاربری های شهری که شامل مناطق مسکونی، مناطق تجاری و خدماتی، مناطق صنعتی، زمین های بایر است، و نیز لایه های اطلاعاتی تراکم معابر و تراکم جمعیت در این فصل بر تغییرات دمای سطح زمین تاثیر گذار هستند. همچنین نتایج حاصل از مدل سازی و نتایج به دست آمده از آزمون آماری تی نمونه های جفت شده نشان دهنده برتری روش شبکه عصبی کانولوشن با ریشه میانگین مربعات خطای 61/0 درجه سانتی گراد، ضریب تعیین 62/0 و درصد خطای برآورد 75/17 نسبت به روش شبکه عصبی پرسپترون چند لایه با ریشه میانگین مربعات خطای 82/0، ضریب تعیین 26/0 و درصد خطای برآورد 34/23 است.

Modeling the effect of city structural parameters on city surface temperature based on segments obtained from object-oriented segmentation in Tehran city

The warming of the urban environment is one of the consequences of unsustainable growth. This research aims to investigate the possibility of modeling the effect of the structural parameters on the city’s surface temperature in the summer season in Tehran. For this purpose, the Landsat-8 image taken in 2018 was used to calculate the surface temperature. In order to determine the study units in this research, the segmentation method was used on the Sentinel-2 image of 2018, and the ratio of the vegetation cover and the separation of built-up areas from non-built-up ones were extracted using this image. The multi-layer perceptron neural network and the convolutional neural network methods were used to model the effect of urban structural parameters on the surface temperature during the summer. The results obtained from random forest feature selection  for the summer indicates that the presence of vegetation and urban uses that include residential and industrial areas, the presence of mixed residential/commercial/administrative areas, and the presence of vegetation affect changes in the urban surface temperature. Further, the information layers of road and population density in this season have an effect on the changing temperature of the earth's surface. Additionally, the results obtained through modeling and t-test of paired samples demonstrate the superiority of the convolutional neural network method, with a root mean square error of 0.61, determination coefficient of 0.62, and 17.75% estimation error, compared to the multi-layer perceptron model, which had 0.82 root mean square error, 0.26 determination coefficient, and 23.34% estimation error.  

تبلیغات