آرشیو

آرشیو شماره ها:
۶۵

چکیده

صخره های مرجانی ازنظر محیط زیستی جزء مهم ترین مناطق جهان هستند. در چند دهه اخیر این بوم سازگان با افزایش دمای اقیانوس ها به شدت توسط رویداد سفید شدن تهدید می شوند. با سفید شدن صخره های مرجانی این بوم سازگان تحت تنش بیشتری قرارگرفته و در معرض مرگ ومیر قرار خواهند گرفت. امروزه به منظور پیش بینی و شناسایی مناطق در معرض خطر سفید شدن مرجان ها از داده های مبتنی بر سنجش ازدور ماهواره ای و قابلیت های تحلیل روند استفاده می شود. در این پژوهش سعی شد با استفاده از روند داده های 35 ساله در بازه زمانی 1980 تا 2015 در قالب داده های چندبعدی، دمای سطح دریا در سال 2022 با به کار گیری ابزارهای ArcGIS Pro برای محدوده خلیج فارس پیش بینی شود و مناطقی که بیشتر در معرض تنش حرارتی منجر به سفید شدگی هستند شناسایی شوند. در این تحلیل برای برازش خط روند از روش هارمونیک استفاده شد. خط روند هارمونیک خطی منحنی است با تکرار دوره ای که بهترین استفاده را برای توصیف داده های دارای الگوی چرخه ای دارد. نتایج اولیه نشان داد که دمای سطح دریا در محدوده خلیج فارس از سال 1996 میانگین دمای بالاتری را تجربه کرده است. نقشه روند به دست آمده (1980 تا 2015)، بیانگر این بود که مناطق شمال غربی خلیج فارس و بخشی از جنوب آن بیشتر در معرض گرمای طولانی قرار دارند. دقت برازش روند داده ها توسط تابع رگرسیونی هارمونیک، پارامترهای آماری، 0.78= R2 و0.5 =RMSE را ارائه داد. در این مطالعه، ناهنجاری های موجود در داده ها محاسبه شد و مناطقی که دمای بالاتر از میانگین داشتند شناسایی شدند. در برش زمانی سالانه پیش بینی شده (2022)، شمال غربی و بخشی از جنوب منطقه خلیج فارس با تنش حرارتی منجر به سفید شدگی مواجه می شوند. نتایج به دست آمده با نقشه های سازمان نووآ در همان تاریخ مقایسه شدند و مورد تأیید قرار گرفتند. پیشنهاد می شود تا سازمان های مسئول برای ارزیابی وضعیت و تهیه نقشه خطر محدوده های مرجانی از روش های مبتنی بر سنجش ازدور و تحلیل روند استفاده کنند.

Investigating the effect of sea surface temperature in predicting coral bleaching events in the Persian Gulf

Extended AbstractIntroductionCoral reefs are one of the most diverse and ecologically important areas in the world. However, with increasing ocean temperatures, many coral reefs are severely threatened by bleaching events. When the water is too warm, corals expel the algae that live in their tissues, causing the coral to turn completely white. When a coral bleaches, it is not dead, and corals can survive a bleaching event, but they are more stressed and at risk of dying. Today, in order to predict and identify areas at risk of coral bleaching, data based on satellite remote sensing are used. In this research, using 35-year data trends, the sea surface temperature in 2022 was predicted using ArcGIS Pro tools for the Persian Gulf area and possible areas exposed to thermal stress leading to coral bleaching were identified.Materials & Methods In order to predict the bleaching of corals, the research data archive of the American National Center for Atmospheric Research (NCAR) has been used. In this analysis, the harmonic method was used to fit the trend line. A harmonic trendline is a periodically repeating curved line that is best used to describe data that follows a cyclical pattern. For anomaly analysis parameters, the average monthly temperature in each location was compared with the overall average temperature to identify anomalies. There are three mathematical methods for calculating anomaly values with the Anomaly function, in this research, the method of difference From mean was used. At the end, the dimension value or band index was extracted, in which a certain statistic is obtained for each pixel in a multi-dimensional or multi-band raster, and the final map of coral bleaching prediction was prepared, and then using the data and global maps of the National Oceanic Administration NOAA , it was evaluated.Results, discussion and conclusionThe preliminary results showed that the sea surface temperature has changed in the Persian Gulf. The range has experienced higher average temperatures since 1996, which could put the area at risk of coral bleaching. The minimum average temperature in the studied time period is 298.758 degrees Kelvin in 1991 and the maximum average temperature in 1399 is 300.737 degrees Kelvin. The parameters that were chosen for multidimensional data trend analysis include water surface temperature variable (SST) and time dimension. The obtained trend map (1980-2015) indicated that the northwestern regions of the Persian Gulf and a part of its south are more exposed to prolonged heat. In this study, frequency parameter 2 was used in the harmonic model, which uses the combination of the first-order linear harmonic curve and the second-order harmonic curve to fit the data. The accuracy of data trend fitting by harmonic regression function provided statistical parameters, R2=0.78 and RMSE=0.5. The value of R2 indicates that the observed value of sea surface temperature (SST) was predicted by the harmonic regression model by 78% and the rest remains undefined. This value of the determination coefficient confirmed the accuracy of the trend map. Another statistical parameter is the root mean square error, the lower the value, the better the fit. In the obtained results, the mean of this error is 0.5, which shows that the harmonic regression model can accurately predict the data. In this study, forecast data was analyzed to find locations where water temperatures remain warm for extended periods of time. In this context, first, anomalies in the data were calculated, anomaly or anomaly is the deviation of an observed value from its average value, and in the analysis, it shows areas that have a temperature higher than the average. As a result of this step, the anomalies in the data were calculated and the areas with higher temperature than the average were identified. In the predicted annual time frame (2022), the north-west and a part of the south of the Persian Gulf region will face a longer period of high temperature. To evaluate the accuracy of the results obtained from the analysis and the method used in predicting sea surface temperature and identifying anomalies (2022-09-03), they were compared with the maps of Nova organization on the same date and were confirmed. It is suggested that responsible organizations use methods based on remote sensing and trend analysis to assess the situation and prepare a risk map of coral reefs.

تبلیغات