آرشیو

آرشیو شماره ها:
۶۵

چکیده

بارش باران یکی از مهم ترین پدیده های جوّی است که بر زندگی بشر اثر می گذارد. پیش بینی بارش باران برای اهداف مختلفی مانند برنامه ریزی فعالیت های کشاورزی، پیش بینی سیلاب، پایش خشکسالی و تأمین آب مصرفی از اهمیت بالایی برخوردار است. هدف این مقاله پیش بینی بارش ماهانه در ایران با استفاده از روش جدید ترکیب شبکه های عصبی مصنوعی و فیلتر کالمن توسعه یافته می باشد، که برای این هدف از داده های میانگین بارش ماهانه حدود 180 ایستگاه سینوپتیک ایران که در سراسر کشور پراکنده هستند، طی سال های 1951 تا 2016 استفاده شده و به پیش بینی بارش ماهانه برای سال 2017 با استفاده از روش مقاله پرداخته شده است. در این مطالعه ایران شامل 8 پهنه اقلیمی است که به روش کوپن-گایگر تقسیم بندی شده است. از شبکه عصبی مصنوعی چندلایه با دو لایه مخفی که در هر لایه 10 نورون قرار گرفته است، برای پیش بینی در هر یک از پهنه های اقلیمی استفاده شد که برای آموزش این شبکه از فیلتر کالمن توسعه یافته استفاده گردید. اختلاف مقادیر بارش ماهانه اندازه گیری شده در سال 2017 و مقادیر حاصل از پیش بینی در تمام ایستگاه ها محاسبه گردید. جذر میانگین مربعات این اختلافات (RMSE) در حالت نرمال برای 8 پهنه اقلیمی در مراحل آزمون و پیش بینی محاسبه گردید که برای اقلیم بیابان خشک و بسیار گرم نسبت به اقلیم بیابان خشک و سرد کمتر است و برای اقلیم نیمه بیابانی خشک و سرد نسبت به اقلیم نیمه بیابانی خشک و بسیار گرم کمتر است و برای اقلیم معتدل با تابستان های خشک و بسیار گرم نسبت به اقلیم معتدل پرباران با تابستان های گرم کمتر است و برای اقلیم برفی با تابستان های خشک و بسیار گرم نسبت به اقلیم برفی با تابستان های خشک و گرم کمتر می باشد. در بیشتر موارد RMSE بدست آمده در اقلیم های بسیار گرم دارای مقدار کمتری است که نشان دهنده کارایی بهتر روش مقاله در پیش بینی بارش در این نوع اقلیم می باشد.

تبلیغات