آرشیو

آرشیو شماره ها:
۶۵

چکیده

آشکارسازی تغییرات با رویکرد شیءگرا در تصاویر با قدرت تفکیک مکانی بالا به این دلیل که علاوه بر ویژگی های طیفی از ویژگی های مکانی، هندسی و بافتی استفاده می کند در مقایسه با رویکرد پیکسل مبنا  نتایج بسیار خوبی به همراه داشته است. با این وجود، انتخاب الگوریتم و ویژگی های بهینه همچنان به عنوان چالشی اساسی باقی مانده است. در این تحقیق، جهت بهبود آشکارسازی تغییرات با رویکرد شیءگرا از الگوریتم جنگل تصادفی ( RF ) در فضای ویژگی های بهینه استفاده شده است. در این راستا، نخست ویژگی های بافت بر روی تصاویر مربوط به دو زمان متفاوت استخراج می شود و از PCA جهت انتخاب ویژگی های بافتی مناسب استفاده می گردد. سپس، قطعه بندی چند مقیاسه در فضای ترکیب یافته از باندهای طیفی و ویژگی های بافتی مناسب در چهار سطح مختلف با استفاده از نرم افزار Ecognition انجام شده و بهترین سطح قطعه بندی تعیین می شود. در ادامه، ویژگی های بافتی، مکانی و هندسی از روی تصویر قطعه بندی شده در بهترین سطح استخراج می گردد و بر اساس محاسبه ی فاصله اقلیدسی مربوط به نمونه های آموزشی در کلاس های مختلف، ویژگی های بهینه شناسایی می شوند. کارایی الگوریتم RF شیءگرا در مقایسه با روش های متداول SVM و KNN بر اساس معیار کاپا و صحت کلی و مدت زمان محاسبات مورد بررسی قرار گرفته است. در این تحقیق، از تصاویر ماهوارهای GeoEye-1 و Quick Bird-1 مربوط به سال های 2002 و 2015 جهت آشکارسازی تغییرات در جزیره قشم استفاده شده است. بر اساس نتایج تجربی، برای الگوریتم های RF شیءگرا، SVM  و KNN صحت کلی به ترتیب 57/86، 76/83 و 75 درصد و ضریب کاپا به ترتیب97/0,  75/0 و 63/0 به دست آمد. همچنین، RF به دلیل استفاده از آستانه گذاری بر روی باندهای مختلف و تولید طبقه بندی کننده های درختی با تنوع بالا و وزن دهی مناسب، نسبت به هر یک از نتایج طبقه بندی کننده ها توانست بالاترین دقت را تولید کند.

تبلیغات