فیلتر های جستجو:
فیلتری انتخاب نشده است.
نمایش ۲٬۷۶۱ تا ۲٬۷۸۰ مورد از کل ۲٬۷۹۴ مورد.
حوزه های تخصصی:
Predicting the development of cancer has always been a serious challenge for scientists and medical professionals. The prompt identification and prognosis of a disease is greatly aided by early-stage detection. Researchers have proposed a number of different strategies for early cancer detection. The purpose of this research is to use meta-learning techniques and several different kinds of convolutional-neural-networks(CNN) to create a model that can accurately and quickly categorize breast cancer(BC). There are many different kinds of breast lesions represented in the Breast Ultrasound Images (BUSI) dataset. It is essential for the early diagnosis and treatment of BC to determine if these tumors are benign or malignant. Several cutting-edge methods were included in this study to create the proposed model. These methods included meta-learning ensemble methodology, transfer-learning, and data-augmentation. With the help of meta-learning, the model will be able to swiftly learn from novel data sets. The feature extraction capability of the model can be improved with the help of pre-trained models through a process called transfer learning. In order to have a larger and more varied dataset, we will use data augmentation techniques to produce new training images. The classification accuracy of the model can be enhanced by using meta-ensemble learning techniques to aggregate the results of several CNNs. Ensemble-learning(EL) will be utilized to aggregate the results of various CNN, and a meta-learning strategy will be applied to optimize the learning process. The evaluation results further demonstrate the model's efficacy and precision. Finally, the suggested model's accuracy, precision, recall, and F1-score will be contrasted to those of conventional methods and other current systems.
The Role of E-Word of Mouth in the Relationship between Online Destination Image, E-satisfaction, E-Trust & E-Service Quality for International Tourists Perception(مقاله علمی وزارت علوم)
منبع:
Journal of Information Technology Management , Volume ۱۳, Special Issue: Big Data Analytics and Management in Internet of Things, ۲۰۲۱
92 - 110
حوزه های تخصصی:
Destination Image as a development which comprises of interrelated assessments converged with general impressions and convictions dependent on data preparing from an assortment of sources after some time; little research has concentrated on picture arrangement corresponding to this kind of goal, this article explores the mediating role of Online Image on the connection between E-WOM and E-service quality, E-satisfaction, E- trust The result of Structural equation Modelling (AMOS) path analysis affirmed that estimation model fulfilled the necessity and evidence the solidness of things, builds and correlation. All the four conditions for estimation model was met: things stacking above 0.7; unwavering composite quality (CR) above 0.7; Average Variance Extraction (AVE) above 0.5. The scholastics and industry will profit by the usage of this examination. Likewise, the tourist industry division can draw from these outcomes as references and proposals inside the impediments of the study. Future research headings were proposed to deal with the restrictions.
Net Asset Value (NAV) Prediction using Dense Residual Models(مقاله علمی وزارت علوم)
حوزه های تخصصی:
Net Asset Value (NAV) has long been a key performance metric for mutual fund investors. Due to the considerable fluctuation in the NAV value, it is risky for investors to make investment decisions. As a result, accurate and reliable NAV forecasts can help investors make better decisions and profit. In this research, we have analysed and compared the NAV prediction performance of our proposed deep learning models, such as N-BEATS and NBSL, with the FLANN model in both univariate and multivariate settings for five Indian mutual funds for forecast periods of 15, 20, 45, 63, 126, and 252 days using RMSE, MAPE, and R2 as evaluation metrics. A large forecast horizon was chosen to assess the model's consistency, reliability, and accuracy. The result reveals that the N-BEATS model outperforms the FLANN and NBSL models in the univariate setting for all datasets and all prediction horizons. In a multivariate setting, the outcome demonstrates that the N-BEATS model outperforms the FLANN model across all datasets and prediction horizons. The result also shows that, as the number of forecast days grew, our suggested models, notably N-BEATS, maintained consistency and attained the highest R2 value throughout the longest forecast duration.
Performance Comparison of Different Digital and Analog Filters Used for Biomedical Signal and Image Processing(مقاله علمی وزارت علوم)
حوزه های تخصصی:
Getting highly accurate output in biomedical data processing concerning biomedical signals and images is impossible because biomedical data are generated from various electronic and electrical resources that can deliver the data with noise. Filtering is widely used for signal and image processing applications in medical, multimedia, communications, biomedical electronics, and computer vision. The biggest problem in biomedical signal and image processing is developing a perfect filter for the system. Digital filters are more advanced in precision and stability than analog filters. Digital filters are getting more attention due to the increasing advancements in digital technologies. Hence, most medical image and signal processing techniques use digital filters for preprocessing tasks. This paper briefly explains various filters used in medical image and signal processing. Matlab is a famous mathematical, analytical software with a platform and built-in tools to design filters and experiment with different inputs. Even though this paper implements filters like, Mean, Median, Weighted Average, Guassian, and Bilateral in Python to verify their performance, a suitable filter can be selected for biomedical applications by comparing their performance.
Impact of Review, Reviewer and Hotel Characteristics on Ewom Helpfulness: An Empirical Study(مقاله علمی وزارت علوم)
حوزه های تخصصی:
Electronic word of mouth (eWOM) has been gaining popularity pertaining to its numerous benefits and ability to be applied in various fields. It helps consumers in making informed decisions and aids service providers in delivering an enhanced service or product. Despite all these benefits, dealing with the huge amounts of eWOM is a consistent problem. eWOM helpfulness comes handy in order to address this issue. In this study, we utilize 16699 hotels related eWOM written by 1099 reviewers which are collected from TripAdvisor.com. Our main objective is to analyze which factors impact eWOM helpfulness and how. For this purpose, eight unique variables belonging to three different categories are selected (eWOM length, eWOM subjectivity, eWOM polarity, eWOM readability, eWOM recency, hotel rating, reviewer badge and reviewer helpfulness) and are analyzed using econometric modelling. Our findings show that hotel rating as well as reviewer badge and helpfulness enjoy a positive significant relationship with eWOM helpfulness. It also suggests that eWOM length, readability and subjectivity positively influences eWOM helpfulness though eWOM polarity and recency are found to have an inverse relationship with the helpfulness of eWOM. Thus, our study reports that review, hotel and reviewer characteristics impact eWOM helpfulness in different ways. This study is summarized with the discussion of theoretical and practical implications.
Efficient NetB3 for Enhanced Lung Cancer Detection: Histopathological Image Study with Augmentation(مقاله علمی وزارت علوم)
حوزه های تخصصی:
Cancer is an abnormal cell growth that occurs uncontrollably within the human body and has the potential to spread to other organs. One of the primary causes of mortality and morbidity for people is cancer, particularly lung cancer. Lung cancer is one of the non-communicable diseases (NCDs), causing 71% of all deaths globally, and is the second most common cancer diagnosed worldwide. The effectiveness of treatment and the survival rate of cancer patients can be significantly increased by early and exact cancer detection. An important factor in specifying the type of cancer is the histopathological diagnosis. In this study, we present a Simple Convolutional Neural Network (CNN) and EfficientNetB3 architecture that is both straightforward and efficient for accurately classifying lung cancer from medical images. EfficientnetB3 emerged as the best-performing classifier, acquiring a trustworthy level of precision, recall, and F1 score, with a remarkable accuracy of 100%, and superior performance demonstrates EfficientnetB3’s better capacity for an accurate lung cancer detection system. Nonetheless, the accuracy ratings of 85% obtained by Simple CNN also demonstrated useful categorization. CNN models had significantly lower accuracy scores than the EfficientnetB3 model, but these determinations indicate how acceptable the classifiers are for lung cancer detection. The novelty of our research is that less work is done on histopathological images. However, the accuracy of the previous work is not very high. In this research, our model outperformed the previous result. The results are advantageous for developing systems that effectively detect lung cancer and provide crucial information about the classifier’s efficiency.
A New S-Box Design by Applying Bat Algorithm Based Technique(مقاله علمی وزارت علوم)
حوزه های تخصصی:
Substitution-boxes (S-boxes) are very important nonlinear components used for achieving strong confusion for enhancing cryptographic security in most of the block ciphers. Designing cryptographically strong S-boxes has been a major research domain for the designers of symmetric crypto systems. In the proposed research work, Bat Algorithm based swarm technique is proposed to design strong S-boxes. Cryptographic strong S-boxes are obtained by the developed swarm technique. Authors analyze cryptographic strength of the obtained S-box by evaluating properties like Bijectivity, Nonlinearity, Bit-Independence Criterion, Linear Probability and Differential Uniformity. The obtained performance parameters for the designed new S-box by the swarm technique are compared with some recently reported S-boxes in the literature. The designed S-box has good cryptographic strength. The designed S-box has good cryptographic strength like nonlinearity = 110.75 and average Strict Avalanche Criterion (SAC) value = 0.506. For the constructed S-box, most of the Differential uniformity components are 4 and shows uniform distribution approximately. The proposed new S-box is also free from the fixed points.
Artificial Intelligence Driven Human Identification(مقاله علمی وزارت علوم)
حوزه های تخصصی:
Human Identification has been widely implemented to enhance the efficiency of surveillance systems, however, systems based on common CCTV (closed-circuit television) cameras are mostly incompatible with the advanced identification algorithms which aim to extract the facial features or speech of an individual for identification. Gait (i.e., an individual’s unique walking pattern/style) is a leading exponent when compared to first-generation biometric modalities as it is unobtrusive (i.e., it requires no contact with the individual), hence proving gait to be an optimal solution to human identification at a distance. This paper proposes an automatic identification system that analyzes gait to identify humans at a distance and predicts the strength of the match (i.e., probability of the match being positive) between two gait profiles. This is achieved by incorporating computer vision, digital image processing, vectorization, artificial intelligence, and multi-threading. The proposed model extracts gait profiles (from low-resolution camera feeds) by breaking down the complete gait cycle into four quarter-cycles using the variations in the width of the region-of-interest and then saves the gait profile in the form of four distinct projections (i.e., vectors) of length 20 units each, thus, summing up to 80 features for each individual’s gait profile. The focus of this study revolved around the speed-accuracy tradeoff of the proposed model where, with a limited dataset and training, the model runs at a speed of 30Hz and yields 85% accurate results on average. A Receiver Operating Characteristic Curve (ROC) is obtained for comparison of the proposed model with other machine learning models to better understand the efficiency of the system
Android Malware Category and Family Identification Using Parallel Machine Learning(مقاله علمی وزارت علوم)
حوزه های تخصصی:
Android malware is one of the most dangerous threats on the Internet. It has been on the rise for several years. As a result, it has impacted many applications such as healthcare, banking, transportation, government, e-commerce, etc. One of the most growing attacks is on Android systems due to its use in many devices worldwide. De-spite significant efforts in detecting and classifying Android malware, there is still a long way to improve the detection process and the classification performance. There is a necessity to provide a basic understanding of the behavior displayed by the most common Android malware categories and families. Hence, understand the distinct ob-jective of malware after identifying their family and category. This paper proposes an effective systematic and functional parallel machine-learning model for the dynamic detection of Android malware categories and families. Standard machine learning classifiers are implemented to analyze a massive malware dataset with 14 major mal-ware categories and 180 prominent malware families of the CCCS-CIC-AndMal2020 on dynamic layers to detect Android malware categories and families. The paper ex-periments with many machine learning algorithms and compares the proposed model with the most recent related work. The results indicate more than 96 % accuracy for Android Malware Category detection and more than 99% for Android Malware family detection overperforming the current related methods. The proposed model offers a highly accurate method for dynamic analysis of Android malware that cuts down the time required to analyze smartphone malware.
Analyzing Hospital Services Quality Using a Hybrid Approach: Evidence from Information Technology(مقاله علمی وزارت علوم)
حوزه های تخصصی:
Hospitals are the most important part of the healthcare system. Statistics show that a significant portion of health budgets are allocated to hospitals. The continuous impact of information technology on hospitals’ performance has led to perfect competition. Accordingly, this study aimed to evaluate the quality indicators of hospital services considering information technology using a hybrid approach of the Kano model, Analytical Hierarchy Process (AHP), and Quality Function Deployment (QFD). In this regard, based on related studies, a total of 18 needs were recognized to evaluate the service quality of a hospital. The statistical population of the study consisted of patients of the hospital and due to the difficulty of access to the patient, a limited sample of 50 patients was selected. After collecting data, the identified needs were classified into three categories called basic, functional, and motivational using the Kano model, and 7 needs were set as basic needs. Then, using the AHP technique, the importance of the basic needs was calculated and considered as the input of the QFD model in the next phase. After providing some solutions based on the literature to meet these 7 needs, solutions were ranked and prioritized using the QFD model. Since the organization had limited resources, the Pareto technique was used to respond to 20% of these strategies and achieve 80% satisfaction. The results of the study showed that the hospitals can achieve 80% satisfaction by implementing the strategies of “holding ethics training courses online” and “creating team spirit and using health information technology in the hospital”, respectively.
Metaheuristic Algorithms for Optimization and Feature Selection in Cloud Data Classification Using Convolutional Neural Network(مقاله علمی وزارت علوم)
حوزه های تخصصی:
Cloud Computing has drastically simplified the management of IT resources by introducing the concept of resource pooling. It has led to a tremendous improvement in infrastructure planning. The major goals of cloud computing include maximization of computing resources with minimization of cost. But the truth is that everything has a price and cloud computing is no different. With Cloud computing there comes a number of security concerns which need to be addressed. Cloud forensics plays a vital role to address the security issues related to cloud computing by identifying, collecting and studying digital evidence in cloud environment. The aim of the research paper is to explore the concept of cloud forensic by applying optimization for feature selection before classification of data on cloud side. The data is classified as malicious and non-malicious using convolutional neural network. The proposed system makes a comparison of models with and without feature selection algorithms before applying the data to CNN. A comparison of different metaheuristics algorithms- Particle Swarm Optimization, Shuffled Frog Leap Optimization and Fire fly algorithm for feature optimization is done based on convergence rate and efficiency.
F-MIM: Feature-based Masking Iterative Method to Generate the Adversarial Images against the Face Recognition Systems(مقاله علمی وزارت علوم)
حوزه های تخصصی:
Numerous face recognition systems employ deep learning techniques to identify individuals in public areas such as shopping malls, airports, and other high-security zones. However, adversarial attacks are susceptible to deep learning-based systems. The adversarial attacks are intentionally generated by the attacker to mislead the systems. These attacks are imperceptible to the human eye. In this paper, we proposed a feature-based masking iterative method (F-MIM) to generate the adversarial images. In this method, we utilize the features of the face to misclassify the models. The proposed approach is based on a black-box attack technique where the attacker does not have the information related to target models. In this black box attack strategy, the face landmark points are modified using the binary masking technique. In the proposed method, we have used the momentum iterative method to increase the transferability of existing attacks. The proposed method is generated using the ArcFace face recognition model that is trained on the Labeled Face in the Wild (LFW) dataset and evaluated the performance of different face recognition models namely ArcFace, MobileFace, MobileNet, CosFace and SphereFace under the dodging and impersonate attack. The F-MIM attack is outperformed in comparison to the existing attacks based on Attack Success Rate evaluation metrics and further improves the transferability.
Three Machine Learning Techniques for Melanoma Cancer Detection(مقاله علمی وزارت علوم)
حوزه های تخصصی:
The application of machine learning technologies for cancer detection purposes are rising due to their ever-increasing accuracy. Melanoma is one of the most common types of skin cancer. Detection of melanoma in the early stages can significantly prevent illness and fetal death. The application of innovative machine learning technology is highly relevant and valuable due to medical practitioners' difficulty in early-stage diagnoses. This paper provides an open-source tutorial on the performance of an algorithm that helps to diagnose melanoma by extracting features from dermatoscopic images and their classification. First, we used a Dull-Razor preprocessing method to remove extra details such as hair. Next, histogram adjustments and lighting thresholds were used to increase the contrast and select lesion boundaries. After using a threshold, a binary-classified version of image was obtained, and the boundary of the lesion was determined. As a result, the features from skin tissue were extracted. Finally, a comparative study was conducted between three methods which are Artificial Neural Network (ANN), Support Vector Machine (SVM) and K-Nearest Neighbor (KNN). The results show that ANN could achieve better accuracy (83.5%). In order to mitigate the biases in existing studies, the source code of this research is available at hadi-naghavipour.com/ml to serve aspiring researchers for improvement, correction and learning and provide a guideline for technology manager practitioners.
Range of Publications for E-Government Services: a Review and Bibliometric Analysis(مقاله علمی وزارت علوم)
حوزه های تخصصی:
With the rapid advancement of information and communication technology (ICT), public administration has adopted the concept of e-government. The academic literature produced many studies in the field of E-government (E-GOV) services, however, there is limited research on such services from the perspective of bibliometric and Network analysis. Therefore, this study aims to present a bibliometric and network analysis of the E-government services literature review obtained from the Scopus database, published between 2011 to 2021. This study uses a five-step method including (1) defining keywords, (2) initializing search outcomes, (3) inclusion and exclusion of some elements of the initial result, (4) compiling initial data statistics, and (5) undertaking analysis of data. The analysis starts by identifying more than 4,880 published articles related to E-government services published between 2011 and 2021. The study findings revealed that the highest number of publications on the E-government Service was in 2019 (102 articles), the top contributing affiliation was Brunel University London, the leading influential country was the USA, and the top contributing Source was Electronic Government. Furthermore, Lu J. occupied the first rank in the list of the most influential authors in terms of citations, while Weerakkody V. occupied the list of the top authors with high publications 20 papers. Likewise, this study showed that there is a collaboration among some authors. This research identified four research clusters by which researchers could be encouraged to widen the research of E-government services in the future. The bibliometric and network analysis of E-government services helps to graphically display the publication's assessment over time and identify domains of current studies' interests and potential directions for further studies. Finally, this research draws a roadmap for future investigation into E-government services.
Exploring the Perceived online Review Credibility and Management Response Influence on Purchase Intention(مقاله علمی وزارت علوم)
حوزه های تخصصی:
Online reviews play a crucial role in the consumer decision-making process in the glamping industry. Some reviews are misleading; therefore, users need to identify credible reviews to form objective opinions. This study examined dimensions of perceived review credibility and its influence on purchase intention within the glamping business. Online surveys were conducted with respondents with relevant travel experiences to examine the key credibility factors. Findings identified that review length, amount of detail, writing style, and travelers’ images; as well as mixed, moderate, and two-sided reviews influence perceived review credibility. It was also found that perceived review credibility influences purchase intention; that management response impacts perceived company credibility and purchase intention; and that personalized management response is valuable for the perceived credibility and purchase intention. A revised conceptual framework was developed to demonstrate the sources of perceived credible online reviews and the role of management responses in the reviews. In addition to the theoretical contribution, this study can have practical marketing implications for businesses when creating online promotional material for their products and engaging with customers
Multi- Objective Fuzzy Software Release Problem with learning capacities for fault detection and correction processes(مقاله علمی وزارت علوم)
حوزه های تخصصی:
Without utilization of computer and its related technology, modern day’s life cannot be headway. It has also transformed into an incredibly troublesome task. The genuine challenges included are shorter life cycles, cost effective and higher software quality goals. Despite these challenges the software developers have started to give cautious thought on to the procedure to develop software, testing and reliability investigation of software and to reinforce the method. Developer most fundamental decisions related to the perfect release time of Software. Software development method incorporates a piece of vulnerabilities and ambiguities. We have proposed a multi objective software release time issue under fuzzy environment using a software reliability growth model to overcome such vulnerabilities and ambiguities. Further we have discussed the fuzzy environment framework to deal with the issue. Considering model and issue, we can especially address the issue of when to release software under these conditions. Results are illustrated numerically.
Investment Project Risk Simulation on the Use of Information Technologies as a Factor for Improving the Financial Safety of the Enterprise(مقاله علمی وزارت علوم)
حوزه های تخصصی:
The article justified the feasibility of an investment project by analysing the performance indicators while taking into account risk and uncertainty of the use of information technologies. The impact of the above calculations of the investment project results is due to the fact that the evaluation of the investment performance depends on the projected cash flows. The purpose of the article is to assess the impact of risks on making investment decisions using information technologies in order to increase the financial security of enterprises. Methodological and practical aspects of risk modelling of the investment project were further developed, using the Monte Carlo method, which allows to construct a model by minimizing data, as well as to maximize the value of data used in the model. This model involves the use of probability theory and random number tables. The results show the distribution of probabilities of the successful project variable and the coefficient of variation of the performance indicator, allowing the investor to take uncertainty into account when making a decision.
Comparative Study on Different Machine Learning Algorithms for Neonatal Diabetes Detection(مقاله علمی وزارت علوم)
حوزه های تخصصی:
This paper gives a performance analysis of multiple vote classifiers based on meta-classification methods for estimating the risk of diabetes. The study's dataset includes a number of biological and clinical risk variables that can result in the development of diabetes. In the analysis, classifiers like Random Forest, Logistic Regression, Gradient Boosting, Support Vector Machines, and Artificial Neural Networks were used. In the study, each classifier was trained and evaluated separately, and the outcomes were compared to those attained using meta-classification methods. Some of the meta-classifiers used in the analysis included Majority Voting, Weighted Majority Voting, and Stacking. The effectiveness of each classifier was evaluated using a number of measures, including accuracy, precision, recall, F1-score, and Area under the Curve (AUC). The results show that meta-classification techniques often outperform solo classifiers in terms of prediction precision. Random Forest and Gradient Boosting, two different classifiers, had the highest accuracy, while Logistic Regression performed the worst. The best performing meta-classifier was stacking, which achieved an accuracy of 84.25%. Weighted Majority Voting came in second (83.86%) and Majority Voting came in third (82.95%).
State Regulation Improvement of the Military-Industrial Complex Development in Ukraine in Terms of Transition to Modern Information Technologies(مقاله علمی وزارت علوم)
حوزه های تخصصی:
The military and political leadership of Ukraine considers the domestic military-industrial complex as an important component of the country's national security and defense strategy and pays special attention to increasing the efficiency of production and scientific and technical activities of defense industry enterprises and organizations. The study represents directions for improving the state regulation for the further development of the military-industrial complex in Ukraine under the conditions of the transition to modern information technologies. Proposals have been made for the formation of the organizational and economic mechanism for state regulation development of the military-industrial complex, aimed at ensuring its innovativeness, stimulating scientific and technical activity, and implementing modern information technologies systematically during the production of weapons, ammunition and military goods.
Analyzing Hybrid C4.5 Algorithm for Sentiment Extraction over Lexical and Semantic Interpretation(مقاله علمی وزارت علوم)
حوزه های تخصصی:
Internet-based social channels have turned into an important information repository for many people to get an idea about current trends and events happening around the world. As a result of Abundance of raw information on these social media platforms, it has become a crucial platform for businesses and individuals to make decisions based on social media analytics. The ever-expanding volume of online data available on the global network necessitates the use of specialized techniques and methods to effectively analyse and utilize this vast amount of information. This study's objective is to comprehend the textual information at the Lexical and Semantic level and to extract sentiments from this information in the most accurate way possible. To achieve this, the paper proposes to cluster semantically related words by evaluating their lexical similarity with respect to feature and sequence vectors. The proposed method utilizes Natural Language Processing, semantic and lexical clustering and hybrid C4.5 algorithm to extract six subcategories of emotions over three classes of sentiments based on word-based analysis of text. The proposed approach has yielded superior results with seven existing approaches in terms of parametric values, with an accuracy of 0.96, precision of 0.92, sensitivity of 0.94, and an f1-score of 0.92.