مطالب مرتبط با کلید واژه " ANN "


۱.

پیش بینی شاخص کل بازدهی سهام تهران با استفاده از مدل های خطی و غیرخطی

کلید واژه ها: پیش بینیشبکه عصبیGARCHANNحافظه بلندمدتARFIMAشاخص کل بازدهی سهام تهران

حوزه های تخصصی:
تعداد بازدید : ۶۱۳
پیش بینی متغیرهای اقتصادی و مالی اهمیت فراوانی برای سیاستگذاران اقتصادی کشورها دارد. در این مقاله شاخص کل بازدهی سهام تهران (TEPIX) با استفاده از داده های روزانه و هفتگی این شاخص در بازه زمانی سال 1377تا 1382 و بکارگیری روش های مختلف پیش بینی مانند مدل های ARIMA، ARFIMA، GARCH و شبکه عصبی (ANN) برآورد و پیش بینی شدند. مقایسه دقت پیش بینی مدل های مذکور از طریق معیار های پیش بینی مانند RMSE، MAE و U-Thiel نشان می دهد که مدل ANN در پیش بینی شاخص روزانه و هفتگی عملکرد بهتری نسبت به سایر مدل ها دارد، اما مقایسه آماری دقت پیش بینی مدل های مختلف با استفاده از آماره دیبلد- ماریانو، تفاوت معنی داری بین دقت پیش بینی مدل های مذکور را نشان نمی دهد.
۲.

مقایسه روش های شبکه عصبی و ماشین بردار پشتیبان در استخراج نقشه های کاربری و پوشش اراضی با استفاده از تصاویر لندست 8 (مطالعه موردی: حوضه صوفی چای)

کلید واژه ها: کاربری اراضیلندست 8ANNSVMشاخص های گیاهی و خاک بایر

حوزه های تخصصی:
  1. جغرافیا فنون جغرافیایی سنجش از راه دور GIS
  2. جغرافیا فنون جغرافیایی روش های کمی در جغرافیا
تعداد بازدید : ۲۶۹ تعداد دانلود : ۲۲۹
تهیه نقشه کاربری و پوشش اراضی برای برنامه ریزی و مدیریت منابع طبیعی امری ضروری می باشد. در این بین استفاده از داده های سنجش از دور با توجه به ارائه اطلاعات به روز، پوشش تکراری، کم هزینه بودن در ارزیابی منابع طبیعی جایگاه خاصی دارد. لذا در این پژوهش، تصاویر لندست 8 به عنوان داده ورودی برای تهیه نقشه کاربری اراضی در سطح 2و1 مورد استفاده قرار گرفت. در این بین، با توجه به جدید بودن این تصاویر، تصحیحات رادیومتریک با استفاده از روابط موجود در محیط مدل از نرم فزار Erdas فرمول نویسی شد. هم چنین از شاخص های گیاهی NDVI، خاک بایر (BI) و سه مولفه اصلی آنالیز مولفه های اصلی (PCA) به عنوان ورودی در کنار دیگر باندها ب رای افزایش دقت طبقه ب ندی مورد استفاده قرار گرفت. از طرفی توابع کرنل ها و رتبه های چندجمله ای روش ماشین بردار پشتیبان (SVM) مورد ارزیابی قرار گرفت و بهترین نتیجه این روش با روش شبکه عصبی مصنوعی (ANN) مورد مقایسه قرار گرفت. نتایج نشان داد که دقت روش ماشین بردار پشتیبان 92٪ با ضریب کاپا 91/0 و روش شبکه عصبی 89٪ با ضریب کاپا 87/0 می باشد هم چنین جایی که کلاس ها رفتار طیفی مشابهی را از خود نشان می دهند روش SVM کارایی بهتری از خود نشان می دهد.
۳.

مقایسه سیستم های هوش مصنوعی (ANFIS و ANN) و رگرسیون لجیت در پیش بینی ورشکستگی مالی شرکت های پذیرفته شده در بورس اوراق بهادار تهران

کلید واژه ها: پیش بینیشبکه های عصبی مصنوعیANNورشکستگی مالیANFISشبکه های عصبی - فازیرگرسیون لجیت (LR)بازاریابی مالی

حوزه های تخصصی:
  1. مدیریت مدیریت صنعتی تحقیق در عملیات پژوهش عملیاتی
  2. مدیریت مدیریت مالی – حسابداری مدیریت مالی
تعداد بازدید : ۲۱۴ تعداد دانلود : ۱۸۸
بانک ها به عنوان بخش اصلی نظام مالی نقش کلیدی را در تأمین مالی بخش های مختلف اقتصادی بر عهده دارند. یکی از مهم ترین موضوع های مطرح شده در زمینه ی مدیریت مالی و بازار یابی مالی، این است که سرمایه گذاران فرصت های مناسب سرمایه گذاری را از فرصت های نامطلوب تشخیص دهندو مدیران مدیریت مالی موثر و کارآمد در تامین منابع مالی داشته باشند. یکی از راه های کمک به سرمایه گذاران، ارائه ی الگوهای پیش بینی ورشکستگی شرکت ها است. تا به امروز تکنیک های مختلفی برای طراحی مدل های پیش بینی ورشکستگی شرکت ها مورد استفاده قرار گرفته است. از آنجا که مطالعات اخیر در زمینه ی پیش بینی ورشکستگی ، بر ایجاد و به کارگیری هوش مصنوعی و روش های یادگیری ماشینی متمرکز شده است، لذا در پژوهش حاضر به منظور پیش بینی ورشکستگی شرکت ها از شبکه های عصبی-فازی(ANFIS)و شبکه های عصبی مصنوعی(ANN) و رگرسیون لجیت(LR) به عنوان مدل مقایسه ای وبرای پیاده سازی مدل ها، از نرم افزار متلب نسخه 2015 استفاده شده است. نمونه ی تحت بررسی شامل 71 شرکت ورشکسته و 74 شرکت سالم می باشد که طی یک دوره 5 ساله از سال 1389 الی1394از بورس اوراق بهادر تهران انتخاب شده اند. یافته های تحقیق حاکی از آن است که در پیش بینی ورشکستگی شرکت ها، مدل مبتنی بر شبکه های عصبی مصنوعی(ANN) نسبت به مدل مبتنی بر شبکه های عصبی-فازی(ANFIS) و رگرسیون لجیت(LR) از دقت کلی بیشتری برخوردار است.
۴.

مقایسه روش های ریزمقیاس نمایی آماری مدل های تغییر اقلیم در شبیه سازی عناصر اقلیمی در منطقه شمال غرب ایران

کلید واژه ها: ریزمقیاس نماییSDSMLARS-WGANNمدل تغییر اقلیم

حوزه های تخصصی:
تعداد بازدید : ۶۵ تعداد دانلود : ۳۹
در این پژوهش نتایج سه مدل ریزمقیاس نمایی SDSM، شبکة عصبی ANN، و مدل مولد آب وهوایی LARS-WG در شبیه سازی پارامترهای اقلیمی بارش روزانه، کمینه، و بیشینة دمای روزانه در منطقة شمال غرب ایران مقایسه شده است. منطقة مورد مطالعه شامل دوازده ایستگاه هواشناسی است که دارای آمار بلندمدت اند. از داده های دما و بارش روزانة ایستگاه ها در دورة 1961 1990 به عنوان دورة پایه در مدل و دورة 1991 2001 به عنوان دورة اعتبارسنجی استفاده شده است. در این بررسی از دو آزمون ناپارامتری و شاخص ریشة مجموع مربعات خطای مدل (RMSE) برای مقایسة دقت سه مدل استفاده شده است. نتایج نشان داد برای دماهای کمینه و بیشینه عملکرد مدل ANN بهتر از دو مدل دیگر است. برای داده های بارش، طبق شاخص RMSE، دقتِ مدل SDSM نسبت به دو مدل دیگر بیشتر است. بر اساس آزمون ناپارامتری من - ویتنی، عملکرد دو مدلِ SDSM و LARS-WG یکسان و بهتر از مدل ANN بود. تحلیل مکانی عملکرد سه مدل نشان می دهد که عملکرد مدل ها بسته به نوع اقلیم منطقه است؛ به طوری که منطقة جنوب غرب آذربایجان شرقی و کردستان، به سبب ناپایداری های بیشتر، عملکرد پایین تری دارند.