ترتیب بر اساس: جدیدترینپربازدیدترین
فیلترهای جستجو: فیلتری انتخاب نشده است.
نمایش ۱۶۱ تا ۱۸۰ مورد از کل ۲٬۹۱۰ مورد.
۱۶۱.

Real-Time Deep Intelligence Analysis and Visualization of COVID-19 Using FCNN Mechanism(مقاله علمی وزارت علوم)

کلیدواژه‌ها: DNA RNA sequence COVID-19 SARS-CoV-2 Coronavirus pandemic

حوزه‌های تخصصی:
تعداد بازدید : ۴۱۶ تعداد دانلود : ۲۸۲
The Analytic visualization suggests representing knowledge during a visual type that may be charts, graphs, lists, or maps. The COVID 19 detection and analysis of spreading is very important for countries. Database management with respect to virus deep analysis is a critical task to the researcher through conventional algorithms. The RNA, DNA, and biological data are helping to the bio-inspired algorithm but its implementation can be complex by software tools. Therefore, an effective technique is required to cross over the above limitations. So that covid 19 pandemic data analysis is performed through FCNN (Fully conventional Neural Network) pre-training network. The dataset is collected from social media, Kaggle, and GitHub databases. At 1st stage, the auto stack encoding process is applied later same data is processed with FCNN deep learning classifier. In this research work, covid-pandemic affects parameters like infected persons, deaths, active cases, and recovering cases. The FCNN is take care of feature extraction, training, testing, and classification. Finally using a confusion matrix accuracy of 98.34%, sensitivity 97.63%, Recall 98.26%, and F measure 98.83% had been estimated.
۱۶۲.

State Regulation Improvement of the Military-Industrial Complex Development in Ukraine in Terms of Transition to Modern Information Technologies(مقاله علمی وزارت علوم)

کلیدواژه‌ها: Defense and Security of the State State Regulation military-industrial complex information technologies Scientific and Technical Potential Innovative development

حوزه‌های تخصصی:
تعداد بازدید : ۲۱۷ تعداد دانلود : ۱۶۵
The military and political leadership of Ukraine considers the domestic military-industrial complex as an important component of the country's national security and defense strategy and pays special attention to increasing the efficiency of production and scientific and technical activities of defense industry enterprises and organizations. The study represents directions for improving the state regulation for the further development of the military-industrial complex in Ukraine under the conditions of the transition to modern information technologies. Proposals have been made for the formation of the organizational and economic mechanism for state regulation development of the military-industrial complex, aimed at ensuring its innovativeness, stimulating scientific and technical activity, and implementing modern information technologies systematically during the production of weapons, ammunition and military goods.
۱۶۳.

نقش تفکر انتقادی در فرایند مدیریت دانش(مقاله علمی وزارت علوم)

کلیدواژه‌ها: مدیریت دانش تفکر انتقادی مرور انتقادی

حوزه‌های تخصصی:
تعداد بازدید : ۵۳۸ تعداد دانلود : ۳۵۲
مدیریت دانش[1] و تفکر انتقادی[2] دو پدیده گسترده و مهم برای سازمان ها و جامعه معاصر هستند و به خوبی مفاهیم مرتبط با آنها در ادبیات نظری علم مدیریت دانش و تفکر انتقادی بحث شده است. بااین حال، پیوندهای مفهومی موجود بین مدیریت دانش و تفکر انتقادی کمتر مورد تجزیه وتحلیل قرار گرفته و نقش تفکر انتقادی در فرایند مدیریت دانش به خوبی تبیین نشده است. هدف از این نوشتار، پر کردن این شکاف نظری و ارائه ارتباطات مفهومی بین مدیریت دانش و تفکر انتقادی است. تجزیه وتحلیل مفاهیم تفکر انتقادی و مدیریت دانش امکان شناسایی پیوندها را در سه بعد فراهم می کند.
۱۶۴.

F-MIM: Feature-based Masking Iterative Method to Generate the Adversarial Images against the Face Recognition Systems(مقاله علمی وزارت علوم)

کلیدواژه‌ها: Adversarial attack Black-box attack Dodging attack Face Recognition Feature based attack

حوزه‌های تخصصی:
تعداد بازدید : ۲۸۸ تعداد دانلود : ۱۲۸
Numerous face recognition systems employ deep learning techniques to identify individuals in public areas such as shopping malls, airports, and other high-security zones. However, adversarial attacks are susceptible to deep learning-based systems. The adversarial attacks are intentionally generated by the attacker to mislead the systems. These attacks are imperceptible to the human eye. In this paper, we proposed a feature-based masking iterative method (F-MIM) to generate the adversarial images. In this method, we utilize the features of the face to misclassify the models. The proposed approach is based on a black-box attack technique where the attacker does not have the information related to target models. In this black box attack strategy, the face landmark points are modified using the binary masking technique. In the proposed method, we have used the momentum iterative method to increase the transferability of existing attacks. The proposed method is generated using the ArcFace face recognition model that is trained on the Labeled Face in the Wild (LFW) dataset and evaluated the performance of different face recognition models namely ArcFace, MobileFace, MobileNet, CosFace and SphereFace under the dodging and impersonate attack. The F-MIM attack is outperformed in comparison to the existing attacks based on Attack Success Rate evaluation metrics and further improves the transferability.
۱۶۵.

Informational and Analytical Systems for Forecasting the Indicators of Financial Security of the Banking System of Ukraine(مقاله علمی وزارت علوم)

کلیدواژه‌ها: Financial security Information–Analytical System banking system Banking Security Forecast Models Financial Stability State

حوزه‌های تخصصی:
تعداد بازدید : ۲۵۶ تعداد دانلود : ۱۷۷
The article is devoted to the modern development of high technologies and computer technology greatly enhanced the development of automated banking systems of banking sector organizations and allowed the synthesis of information and communication technologies for their formation. The main purpose of the article is to select the main indicators for assessing the level of financial security of the banking system of the state and identify promising areas of its development using forecasting models. In the process of research such analytical functions have been used: polynomial, exponential, power and logarithmic. The authors believe that the information and analytical provision of the financial security of the bank is an information provision that combines, on the one hand, information work, that is, ways, means and methods of collecting the necessary information, and on the other - analytical work, which includes forms and methods of information analysis and processing, which ensures an objective assessment of the situation and the adoption of a balanced management decision. As a result, forecast models were built for each of the indicators and also, it has been found that most indicators of the banking system of Ukraine in 2021-2023 will remain at “unsatisfactory” and “critical” levels. In conclusions it was proposed to introduce measures that would be aimed at improving the reliability and stability of the banking system of Ukraine.
۱۶۶.

Analyzing Hospital Services Quality Using a Hybrid Approach: Evidence from Information Technology(مقاله علمی وزارت علوم)

کلیدواژه‌ها: Health information technology Patient satisfaction Kano Model AHP technique QFD model

حوزه‌های تخصصی:
تعداد بازدید : ۳۱۸ تعداد دانلود : ۱۸۸
Hospitals are the most important part of the healthcare system. Statistics show that a significant portion of health budgets are allocated to hospitals. The continuous impact of information technology on hospitals’ performance has led to perfect competition. Accordingly, this study aimed to evaluate the quality indicators of hospital services considering information technology using a hybrid approach of the Kano model, Analytical Hierarchy Process (AHP), and Quality Function Deployment (QFD). In this regard, based on related studies, a total of 18 needs were recognized to evaluate the service quality of a hospital. The statistical population of the study consisted of patients of the hospital and due to the difficulty of access to the patient, a limited sample of 50 patients was selected. After collecting data, the identified needs were classified into three categories called basic, functional, and motivational using the Kano model, and 7 needs were set as basic needs. Then, using the AHP technique, the importance of the basic needs was calculated and considered as the input of the QFD model in the next phase. After providing some solutions based on the literature to meet these 7 needs, solutions were ranked and prioritized using the QFD model. Since the organization had limited resources, the Pareto technique was used to respond to 20% of these strategies and achieve 80% satisfaction. The results of the study showed that the hospitals can achieve 80% satisfaction by implementing the strategies of “holding ethics training courses online” and “creating team spirit and using health information technology in the hospital”, respectively.
۱۶۷.

The Digital Transformation of Creative Industries as a Management Imperative of Information Security of Society on a Parity-Legal Basis(مقاله علمی وزارت علوم)

کلیدواژه‌ها: Digital Transformation Creative Industries Imperatives System-Reflexive Management Information security

حوزه‌های تخصصی:
تعداد بازدید : ۳۱۰ تعداد دانلود : ۱۶۹
The article defines that the composition and structure of creative industries, their branch specialization and cooperation, the scale and directions of development of industrial and other relations are determined by means of solving spatial problems and are conditioned by the level of digital transformation as imperative system-reflex management of information security of society at parity-legal principles. The process of formation of digital transformation of creative industries as an imperative of system-reflexive management of information security of society on a parity-legal basis in modern conditions today must meet globalization challenges that dictate the development of the country's economy as a whole. This should be manifested in the application of modern integration models for the formation and development of creative industries. It is substantiated that the main tasks of the strategy of financial capacity for digital transformation of creative industries as an imperative of system-reflexive management of information security of society on a parity-legal basis are to achieve balance of financial opportunities and needs of industries, efficiency of their financial relations, efficiency of processes of formation, movement, allocation and use of financial resources, rational structure of sources of financial resources, under which is possible stable financial support of digital transformation.
۱۶۸.

Efficient Machine Learning Algorithms in Hybrid Filtering Based Recommendation System(مقاله علمی وزارت علوم)

کلیدواژه‌ها: Recommender System Content-Based Filtering collaborative filtering Movie Recommendation deep learning

حوزه‌های تخصصی:
تعداد بازدید : ۲۷۳ تعداد دانلود : ۱۶۰
The widespread use of E-commerce websites has drastically increased the need for automatic recommendation systems with machine learning. In recent years, many ML-based recommenders and analysers have been built; however, their scope is limited to using a single filtering technique and processing with clustering-based predictions. This paper aims to provide a systematic year-wise survey and evolution of these existing recommenders and analysers in specific deep learning-based hybrid filtering categories using movie datasets. They are compared to others based on their problem analysis, learning factors, data sets, performance, and limitations. Most contributions are found with collaborative filtering using user or item similarity and deep learning for the IMDB datasets. In this direction, this paper introduces a new and efficient Hybrid Filtering based Recommendation System using Deep Learning (HFRS-DL), which includes multiple layers and stages to provide a better solution for generating recommendations.
۱۶۹.

Net Asset Value (NAV) Prediction using Dense Residual Models(مقاله علمی وزارت علوم)

کلیدواژه‌ها: Net Asset Value NAV prediction Mutual Funds N-BEATS FLANN LSTM

حوزه‌های تخصصی:
تعداد بازدید : ۳۱۷ تعداد دانلود : ۱۵۴
Net Asset Value (NAV) has long been a key performance metric for mutual fund investors. Due to the considerable fluctuation in the NAV value, it is risky for investors to make investment decisions. As a result, accurate and reliable NAV forecasts can help investors make better decisions and profit. In this research, we have analysed and compared the NAV prediction performance of our proposed deep learning models, such as N-BEATS and NBSL, with the FLANN model in both univariate and multivariate settings for five Indian mutual funds for forecast periods of 15, 20, 45, 63, 126, and 252 days using RMSE, MAPE, and R2 as evaluation metrics. A large forecast horizon was chosen to assess the model's consistency, reliability, and accuracy. The result reveals that the N-BEATS model outperforms the FLANN and NBSL models in the univariate setting for all datasets and all prediction horizons. In a multivariate setting, the outcome demonstrates that the N-BEATS model outperforms the FLANN model across all datasets and prediction horizons. The result also shows that, as the number of forecast days grew, our suggested models, notably N-BEATS, maintained consistency and attained the highest R2 value throughout the longest forecast duration.
۱۷۰.

Forensic Research of the Computer Tools and Systems in the Fight against Cybercrime(مقاله علمی وزارت علوم)

کلیدواژه‌ها: Forensic research Computer tools and systems cybercrime

حوزه‌های تخصصی:
تعداد بازدید : ۳۵۵ تعداد دانلود : ۲۸۹
The cybersecurity in the modern world has become global, and cyber attacks are becoming more complex and large-scale. In the system of civil and criminal justice, computer forensics helps to ensure the integrity of digital evidence presented in court cases. The purpose of this study is to develop scientifically sound proposals and recommendations for the implementation of tools for forensic research of computer tools and systems in the fight against cybercrime. The relevance of this study is due to the need to implement active ways to protect and combat cybercrime. To achieve the goal of the study, methodological principles and approaches of legal science were used. It is proposed to use computer forensic methods more widely research in the fight against cybercrime.This study identifies the types of computer forensics: forensics database; electronic forensics; malware forensics; criminology of memory; mobile forensics; network forensics. The authors foundlack of a regulatory mechanism to regulate cybersecurity, capture and use of digital evidence and the regulatory framework for international cooperation. To brought need in strengthening international cooperation and in developing appropriate policies and legislative initiatives of security and network and information systems, improvement legislation in the field countering cybercrime.
۱۷۱.

Exemplary Growth Through Online Shopping With Satisfied Consumers In Vellore District(مقاله علمی وزارت علوم)

نویسنده:

کلیدواژه‌ها: Consumer behavior Fondness factors Online shopping Repurchase Satisfaction and Technology development

حوزه‌های تخصصی:
تعداد بازدید : ۳۴۴ تعداد دانلود : ۲۴۱
The rapid emergence and evolution of technology have greatly impacted the way people live their lives. The internet has become a vital part of our daily lives. E-commerce is a type of technology development that enables customers to buy and sell products online. It is a unique form of transaction that connects people from all around the world. Today, many consumers shop for products online and present their products along with their specifications. This is becoming more prevalent. This increases the number of consumers online, which can result in a drop in growth. This is one of the main factors that a company uses to measure its success. Growing business success is revealed with retained customers. Satisfied consumers are the assets for a growing business. The study investigates the factors that influence people's decisions when it comes to buying items online. It shows that the experiences they have while shopping online can affect their decisions. The following statistical tools were applied for this study: percentage analysis, mean score with rank correlation, and t-Test. The results reveal that the factors quality, cost, product variety, uniqueness, and safety payments were highlighted as important indicators of performance and that the companies that do online businesses had to take care of their main goal as per the proposal.
۱۷۲.

Generation of Syntax Parser on South Indian Language using Bottom-Up Parsing Technique and PCFG(مقاله علمی وزارت علوم)

کلیدواژه‌ها: Natural Language Processing Artificial Intelligence Syntax Parser CYK Parsing Algorithm Probabilistic Context Free Grammar

حوزه‌های تخصصی:
تعداد بازدید : ۵۲۱ تعداد دانلود : ۲۶۹
In our research, we provide a statistical syntax parsing method experimented on Kannada texts, which is an official language of Karnataka, India. The dataset is downloaded from TDIL website. Using the Cocke-Younger-Kasami (CYK) parsing technique, we generated Kannada Treebank dataset from 1000 annotated sentences in the first stage. The Treebank generated in this stage contains 1000 syntactically structured sentences and it is used as input to train the syntax parser model in the second stage. We have adopted Probabilistic Context Free Grammar (PCFG) while training the parser model and extracting the Chmosky Normal Form (CNF) grammar from a Treebank dataset. The developed syntax parser model is tested on 150 raw Kannada sentences. It outputs with the most likely parse tree for each sentence and this is verified with golden Treebank. The syntax parser model generated 74.2% precision, 79.4% recall, and 75.3% F1-score respectively. The similar technique may be adopted for other low resource languages.
۱۷۳.

Cucumber Leaf Disease Detection and Classification Using a Deep Convolutional Neural Network(مقاله علمی وزارت علوم)

کلیدواژه‌ها: DCNNs (Deep Convolution Neural Network) CNNs (Convolution Neural Network) Classification

حوزه‌های تخصصی:
تعداد بازدید : ۲۷۹ تعداد دانلود : ۱۲۷
Due to obstruction in photosynthesis, the leaves of the plants get affected by the disease. Powdery mildew is the main disease in cucumber plants which generally occurs in the middle and late stages. Cucumber plant leaves are affected by various diseases, such as powdery mildew, downy mildew and Alternaria leaf spot, which ultimately affect the photosynthesis process; that’s why it is necessary to detect diseases at the right time to prevent the loss of plants. This paper aims to identify and classify diseases of cucumber leaves at the right time using a deep convolutional neural network (DCNN). In this work, the Deep-CNN model based on disease classification is used to enhance the performance of the ResNet50 model. The proposed model generates the most accurate results for cucumber disease detection using data enhancement based on a different data set. The data augmentation method plays an important role in enhancing the characteristics of cucumber leaves. Due to the requirements of the large number of parameters and the expensive computations required to modify standard CNNs, the pytorch library was used in this work which provides a wide range of deep learning algorithms. To assess the model accuracy large quantity of four types of healthy and diseased leaves and specific parameters such as batch size and epochs were compared with various machine learning algorithms such as support vector machine method, self-organizing map, convolutional neural network and proposed method in which the proposed DCNN model gave better results.
۱۷۴.

Prediction of Type - I and Type –II Diabetes: A Hybrid Approach using Fuzzy Logic and Machine Learning Algorithms(مقاله علمی وزارت علوم)

کلیدواژه‌ها: diabetes Blood sugar Machine Learning Algorithm Fuzzy Logic Disease Management risk factors insulin resistance polynomial regression Support vector regression

حوزه‌های تخصصی:
تعداد بازدید : ۲۱۹ تعداد دانلود : ۱۴۴
Diseases like diabetes are chronic and require long-term management. Inadequate production of insulin results in high blood sugar levels. Such diseases lead to serious health issues such as heart ailments, blood vessel complaints, eye ailments, kidney function disorders, and nerve ailments. Hence, accurate assessment and management of risk factors are crucial for the onset of diabetes. Our proposed approach combines fuzzy logic & machine learning algorithms for diabetes risk prediction. Three machine learning models were trained to classify patients into two categories of diabetes (Type-I and Type-II) based on their clinical dataset collected from Katihar Medical College & Hospital and Suvadhan Lab. The polynomial regression algorithm achieved a score of 0.947, while the support vector regression algorithm with the rbf kernel achieved a score of 0.954, with a linear kernel achieved a score of 0.73. Our proposed approach performed well with respect to the conventional approaches with improved accuracy by identifying the patients at diabetes risk. In future work, we further analyze the relationship between other ignored factors which contribute to diabetes risk.
۱۷۵.

Speech Enhancement using Greedy Dictionary Learning and Sparse Recovery(مقاله علمی وزارت علوم)

کلیدواژه‌ها: Sparse representation Greedy Dictionary Learning Singular Value Decomposition Orthogonal Matching Pursuit Quantization

حوزه‌های تخصصی:
تعداد بازدید : ۲۸۴ تعداد دانلود : ۱۷۹
Most real-time speech signals are frequently disrupted by noise such as traffic, babbling, and background noises, among other things. The goal of speech denoising is to extract the clean speech signal from as many distorted components as possible. For speech denoising, many researchers worked on sparse representation and dictionary learning algorithms. These algorithms, however, have many disadvantages, including being overcomplete, computationally expensive, and susceptible to orthogonality restrictions, as well as a lack of arithmetic precision due to the usage of double-precision. We propose a greedy technique for dictionary learning with sparse representation to overcome these concerns. In this technique, the input signal's singular value decomposition is used to exploit orthogonality, and here the ℓ1-ℓ2 norm is employed to obtain sparsity to learn the dictionary. It improves dictionary learning by overcoming the orthogonality constraint, the three-sigma rule-based number of iterations, and the overcomplete nature. And this technique has resulted in improved performance as well as reduced computing complexity. With a bit-precision of Q7 fixed-point arithmetic, this approach is also used in resource-constrained embedded systems, and the performance is considerably better than other algorithms. The greedy approach outperforms the other two in terms of SNR, Short-Time Objective Intelligibility, and computing time.
۱۷۶.

بررسی تاثیر رفتارهای پنهان کننده دانش بر سکوت کارکنان و رفتارهای منحرف سازمانی با نقش میانجی نقض قرارداد روانشناختی (نمونه پژوهش: اداره کل امور مالیاتی مودیان بزرگ)(مقاله علمی وزارت علوم)

کلیدواژه‌ها: رفتارهای پنهان کننده دانش سکوت کارکنان رفتارهای منحرف سازمانی

حوزه‌های تخصصی:
تعداد بازدید : ۲۱۱ تعداد دانلود : ۲۳۱
هدف از پژوهش حاضر، بررسی تاثیر رفتارهای پنهان کننده دانش بر سکوت کارکنان و رفتارهای منحرف سازمانی با نقش میانجی نقض قرارداد روانشناختی می باشد. این پژوهش از نظر نوع هدف، کاربردی و از نظر نوع ماهیت، توصیفی- پیمایشی است. جامعه آماری پژوهش حاضر، شامل کارکنان اداره امور مالیاتی مودیان بزرگ که مشتمل بر 400 نفر می باشند که تعداد 227 نفر به روش تصادفی ساده و به روش تحلیل توان به عنوان نمونه آماری انتخاب گردیدند. جهت گردآوری اطلاعات از پرسشنامه استاندارد استفاده شده است و داده ها بوسیله تحلیل چندمتغیره مبتنی بر مدل سازی معادلات ساختاری با رویکرد کواریانس محور در بستر نرم افزار Amos ورژن 24 مورد تجزیه و تحلیل قرار گرفت. نتایج تحقیق حاکی از تایید تاثیر پنهان کاری منطقی بر سکوت تدافعی، پنهان کاری گریزان بر سکوت رابطه ای، پنهان کاری منطقی بر سکوت رابطه ای، پنهان کاری گریزان بر سکوت بی اثر، پنهان کاری منطقی بر سکوت بی اثر و سکوت تدافعی بر رفتار منحرف سازمانی، سکوت رابطه ای بر رفتار منحرف سازمانی و سکوت بی اثر بر رفتار منحرف سازمانی می باشد و همچنین نتایج حاصل از تحلیل میانجی نشان می دهد که سازه "نقض قرارداد روانشناختی" برای تمامی روابط میان ابعاد پنهان کاری و ابعاد سکوت دارای نقش میانجی است، به طوری که فرآیند میانجی گری مذکور برای روابط علی میان "پنهان کاری خاموش" و "سکوت تدافعی/ سکوت بی اثر" به صورت کامل و برای مابقی روابط به صورت جزئی است. در نهایت، از میان بیست و یک فرضیه مطروحه، هفده فرضیه مورد تائید قرار گرفت که از این بین تاثیر سکوت رابطه ای بر رفتار منحرف سازمانی از بالاترین ضریب مسیر (0.33) برخوردار است.
۱۷۷.

Early Diagnosis of Alzheimer Disease from Mri Using Deep Learning Models(مقاله علمی وزارت علوم)

کلیدواژه‌ها: Alzheimers disease (AD) Magnetic Resonance Imaging (MRI) Deep Learning (DL) Artificial Neural Network (ANN) and Visual Geometry Group (VGG)

حوزه‌های تخصصی:
تعداد بازدید : ۳۴۶ تعداد دانلود : ۱۵۳
On a global scale, one of the prevalent causes of dementia is Alzheimer’s disease (AD). It will cause a steady deterioration in the individual from the mild stage to the severe stage, and thus impair their capacity to finish any tasks with no aid. The diagnosis is done with the utilization of existing methods which include medical history; neuropsychological testing as well as MRI (Magnetic Resonance Imaging), a lack of sensitivity as well as precision does affect the consistency of efficient procedures. With the deep learning network’s utilization, it is possible to create a framework for detecting specific AD characteristics from the MRI images. While automatic diagnosis is done with the application of diverse machine learning techniques, the existing ones do suffer from certain constraints with regards to accuracy. Thus, this work’s key goal is to increase the classification’s accuracy through the inclusion of a pre-processing approach prior to the deep learning model. The Alzheimer's disease Neuroimaging Initiative (ADNI) database of AD patients was used to develop a deep learning approach for AD identification. In addition, this study will present ideas for Haralick features, feature extraction from Local Binary Pattern (LBP), Artificial Neural Network (ANN), and Visual Geometry Group (VGG)-19 network techniques. The results of the experiments show that the deep learners offered are more effective than other systems already in use.
۱۷۸.

Economic and mathematical modeling of innovative development of the agglomeration on the basis of information technologies(مقاله علمی وزارت علوم)

کلیدواژه‌ها: Urban agglomeration Innovation Innovative development Region Information and Communication Technologies

حوزه‌های تخصصی:
تعداد بازدید : ۳۹۸ تعداد دانلود : ۲۴۰
Management of innovation processes is one of the functions of local governments and, therefore, they should be the initiators and moderators of communication between research organizations and enterprises. The program formation of agglomeration innovative development involves the creation of promoting innovation body, which allows to achieve the maximum involvement degree of all the participants in the innovation process. The article is devoted to the research of urban agglomeration innovative development, the need to create a special body or center for innovation, which will form a set and interconnected, and will be integrated into the urban agglomeration and carry out innovation and technological activities as part of research and production infrastructure. The article develops a method for predicting the effectiveness of the advancement of this body through the digital space using trend models. It is expected to receive three forecasts: optimistic, realistic and pessimistic. This will accelerate the establishment of links between the players of the regional innovation market and contribute to a qualitative change in the spatial and functional structure of urban agglomerations. The development of information and communication technologies allows to create effective systems that will stimulate the agglomerations innovative development . Therefore, the communicative activities of regional governments should be carried out through the use of information and communication technologies. Thus, the urgency of developing a methodology for assessing the increase of the innovative component of agglomeration economic development is due to the low percentage of implementation research results, low science-intensive gross value added in the Ukrainian regions, the possibility of using information and communication technologies. Increasing the number of targeted visits will simplify and speed up the process of establishing links between innovation market players at the agglomeration spatial level in both the short and long term
۱۷۹.

Process model of development of leadership qualities of public servants in the conditions of digital transformation(مقاله علمی وزارت علوم)

کلیدواژه‌ها: Public servants leadership Leadership qualities Professionalization competence Governance Digital Transformation

حوزه‌های تخصصی:
تعداد بازدید : ۴۱۶ تعداد دانلود : ۲۳۶
The purpose of this study is to develop proposals and recommendations for the implementation of a process model for the development of leadership qualities of public servants and justification of the conditions for ensuring its effectiveness in terms of digital transformation. The relevance of this study is due to the need to ensure development of the process of professionalization of the senior civil service personnel on the basis of development of leadership qualities that will contribute to the effective operation of the civil service of Ukraine, change management and successful implementation of reforms in Ukraine, taking into account the best world practices. The methodology for assessing the level of managerial competencies of public servants according to the degree of implementation of strategic (key) competencies has been developed. The assessment of managerial competencies according to the degree of their significance for civil servants, the expert group identified the most important management competencies. An approach to understanding has proposed interaction of leadership competencies with managerial competencies, a diagnostic model for assessing the leadership of public servants has been developed. To implement the model, a system of indicators has been developed - single, complex and integrated indicators of civil servants' leadership, using tools: a tree of civil servants' leadership indicators, matrices for the calculated civil servants' leadership indicator, measurement scales for the corresponding level of indicators.
۱۸۰.

Digitalization of Biocluster Management on Basis of Balanced Scorecard(مقاله علمی وزارت علوم)

کلیدواژه‌ها: Bioeconomy digitalization Biocluster Strategic Management balanced scorecard Forecasting

حوزه‌های تخصصی:
تعداد بازدید : ۳۰۸ تعداد دانلود : ۱۸۲
The article is devoted to the digitalization of biocluster management on the basis of a balanced scorecard. It is proved that a biocluster, as a local model of business concentration that integrates environmentally oriented enterprises, through a combination of traditional and new technologies, resource saving and diversification of the range of environmental products, is able to satisfy various customer requests in one place and time, to ensure competitive advantages and integration into the world economic space. The concept of applying a balanced scorecard in the strategic biocluster management was formed. The technology of formation and mechanism of implementation of the balanced scorecard and digital data processing technologies into the management information system of strategic biocluster management was proposed. The digital outline of the strategic program for transferring the mission and strategy of the biocluster to the mode of effective use, capacity building and development was formed. The scorecard for strategic management of the biocluster was developed, the study of the dynamics of which allows to determine the strengths and weaknesses of the biocluster, to identify tolerance and resilience to changes in the business environment, to identify ways to achieve the set development goals.

پالایش نتایج جستجو

تعداد نتایج در یک صفحه:

درجه علمی

مجله

سال

زبان