مطالب مرتبط با کلیدواژه

شبکه های عصبی مصنوعی


۲۱.

تأثیر سیستم پیش­بینی تقاضای متلاطم بر اثر شلاقی در زنجیره تأمین: یک رویکرد مقایسه­ای(مقاله علمی وزارت علوم)

کلیدواژه‌ها: شبکه های عصبی مصنوعی پیش بینی مدیریت زنجیره تأمین تقاضای متلاطم

حوزه های تخصصی:
  1. حوزه‌های تخصصی مدیریت مدیریت صنعتی تحقیق در عملیات پژوهش عملیاتی
  2. حوزه‌های تخصصی مدیریت مدیریت صنعتی مدیریت زنجیره تامین
تعداد بازدید : ۲۳۸۹ تعداد دانلود : ۱۳۱۴
یک مبحث مهم در مدیریت زنجیره تأمین، پدیده اثر شلاقی است. این مهم بیانگر افزایش تغییرپذیری تقاضا طی حرکت در طول زنجیره می باشد. در این مقاله تأثیر چندین روش کلاسیک و هوشمند در فرایند پیش­بینی تقاضای متلاطم، در وقوع پدیده اثر شلاقی بررسی می­شود. نتیجه این تحقیق حاکی از آن است که شبکه­های عصبی در مقایسه با روش­های معمول کلاسیک همچون روش هموارسازی نمایی با توجه به رفتار غیرخطی، نوسانی و حتی آشوبی تقاضای متلاطم، توان بیشتری در مدل سازی و پیش­بینی این رفتار دارند. در انتهای مقاله به کمک یک مثال عددی، کاربرد بهره­گیری از شبکه­های عصبی در پیش­بینی تقاضای متلاطم، در کاهش موفقیت آمیز پدیده اثر شلاقی به تصویر در آمده است.
۲۳.

دسته بندی کاربران موبایل بانک با استفاده از رویکرد داده کاوی: مقایسه بین تکنیک شبکه های عصبی مصنوعی و تکنیک بیز ساده(مقاله علمی وزارت علوم)

کلیدواژه‌ها: شبکه های عصبی مصنوعی داده کاوی موبایل بانک بیز ساده رپید ماینر

حوزه های تخصصی:
تعداد بازدید : ۱۹۹۷ تعداد دانلود : ۹۷۳
در دهه ی اخیر پیشرفت تکنولوژی های گوناگون باعث تغییر در ارائه خدمات بوسیله سازمان ها گردیده است. یکی از حوزه هایی که صنعت بانکداری را تحت تاثیر خود قرار داده است حوزه فناوری اطلاعات می باشد. تکنولوژی ارتباط بیسیم یکی از زیر مجموعه های حوزه فناوری می باشد که در این سال های اخیر پیشرفت چشم گیری داشته است که منجر به ارائه خدمت موبایل بانک از سوی بانک ها گردیده است. صنعت بانکداری، یک صنعت نمونه می باشد که از داده کاوی استفاده می کند. داده کاوی را می توان بعنوان یک نوع از کشف دانش برای حل مسئله در زمینه خاص بیان کرد. در این پژوهش 232817 داده استفاده شده است که هدف آن پیدا کردن مدل هایی با توجه به مشخصات مشتری و استفاده آن ها از موبایل بانک با استفاده از دو تکنیک شبکه های عصبی مصنوعی و بیز ساده می باشد تا بدین وسیله به مشتریانی که در این دسته بندی قرا می گیرند اما تا کنون خدمت موبایل بانک را استفاده نکردند این خدمت را بصورت پیشنهادی ارائه دهد تا بتواند از این طریق به جذب مشتری بیشتر و نگهداری مشتریان کنونی و از همه مهمتر افزایش رضایتمندی مشتریان کمک کند. همچنین در نهایت اثبات می شود که تکنیک شبکه های عصبی مصنوعی نسبت به تکنیک بیز ساده از دقت بالاتری برخوردار است که این امر منجر به تایید فرضیه ی پژوهش می گردد.
۲۴.

پیش بینی صادرات محصولات کشاورزی ایران: کاربرد مدلهای رگرسیونی و شبکه عصبی مصنوعی(مقاله علمی وزارت علوم)

کلیدواژه‌ها: شبکه های عصبی مصنوعی پیش بینی صادرات بخش کشاورزی مدل VAR

حوزه های تخصصی:
تعداد بازدید : ۲۱۹۱ تعداد دانلود : ۸۶۰
پیش بینی متغیرهای کلان اقتصادی برای برنامه ریزان و سیاستگذاران و واحدهای اقتصادی از اهمیت ویژه ای برخوردار است و از همین رو مدلهای گوناگونی برای پیش بینی ابداع شده است. یکی از روشهای پرکاربرد پیش بینی، به خصوص در دهه های اخیر، روش شبکه های عصبی مصنوعی است. در این مطالعه نیز مدل صادرات محصولات کشاورزی ایران برای دوره 1387-92 با استفاده از روشهای اقتصادسنجی و شبکه عصبی مصنوعی پیش بینی شده است. به این منظور از داده های دوره 1344-80 برای پیش بینی و آموزش شبکه و از داده های دوره 1381-86 برای آزمون صحت پیش بینی های به دست آمده استفاده شد. نتایج مطالعه نشان داد که شبکه عصبی پیشرو دارای خطای کمتر و عملکرد بهتری در مقایسه با روش اقتصادسنجی VAR برای پیش بینی مقدار صادرات محصولات کشاورزی ایران است. مقدار صادرات محصولات کشاورزی در سالهای 1389 و 1392 با توجه به پیش بینی صورت گرفته با استفاده از روش شبکه عصبی، با کاهش همراه خواهد بود و لذا لازم است دولت با استفاده از سیاستهای مشوق صادرات به مقابله با این امر بپردازد.
۲۵.

پیش بینی تقاضای تجهیزات پزشکی (سی تی اسکن) براساس شبکه های عصبی مصنوعی و روش ARIMA(مقاله علمی وزارت علوم)

کلیدواژه‌ها: شبکه های عصبی مصنوعی الگوریتم ژنتیک تجهیزات پزشکی پیش بینی تقاضا مدل آریما

حوزه های تخصصی:
تعداد بازدید : ۱۴۷۰ تعداد دانلود : ۷۶۱
بخش بهداشت و درمان و زیرساخت های مورد نیاز آن هم در بخش نرم افزاری و هم در بخش سخت افزاری همواره مورد توجه بوده است. در این میان اهمیت تجهیزات و اقلام پزشکی در سیستم سلامت کشور بر هیچ کس پوشیده نیست. سازمان ها و شرکت های فعال در این بخش باید بتوانند تصمیمات صحیح را با توجه به اطلاعات موجود در محیط پر نوسان کسب و کار امروز اخذ نمایند. بنابراین، تخمین مقدار تقاضا در دوره های آتی موضوعی حیاتی به نظر می رسد. روش و ابزارهای مختلفی برای انجام پیش بینی تقاضا وجود دارد که هر یک مزیت ها و نقاط ضعف مخصوص به خود را دارند. در این مقاله با استفاده از یک شبکه عصبی مصنوعی چند لایه پیشخور با دو لایه پنهان که با الگوریتم ژنتیک به عنوان الگوریتم یادگیری آموزش داده شده است، سیستمی مقایسه ای با روش رایج مورد استفاده در پیش بینی (روش باکس – جنکینز) با مدل ARIMA(2,1,1) برای پیش بینی تقاضای دستگاه سی تی اسکن ارائه شده است که با توجه به معیار سنجش دقت مدل ها یعنی میانگین مجذور خطا (MSE)، مدل شبکه عصبی اثربخشی و کارایی بیشتری را در مقابل با روش آریما در پیش بینی تقاضای دستگاه سی تی اسکن با توجه به داده ها و اطلاعات موجود از خود نشان داده است.
۲۶.

پیش بینی دماهای حداکثر با استفاده از مدل شبکه عصبی مصنوعی مطالعه موردی: شهرستان اردبیل(مقاله علمی وزارت علوم)

کلیدواژه‌ها: شبکه های عصبی مصنوعی پیش بینی دمای حداکثر شهرستان اردبیل

حوزه های تخصصی:
تعداد بازدید : ۱۷۴۷ تعداد دانلود : ۱۵۲۸
با توجه به تغییرات اقلیمی، گرمایش جهانی و خشکسالی­های اخیر، پیش­بینی دماهای حداکثر به عنوان یکی از مهمترین پارامترهای اقلیمی فرصت مناسبی را برای برنامه­ریزی و ارائه تمهیدات لازم در اختیار برنامه­ریزان قرار می­دهد. بررسی و تحلیل دماهای حداکثر به عنوان یکی از پارامترهای اقلیمی در مدیریت منابع آبی و طبیعی، کشاورزی، گسترش آفات و بیماری­ها، ذوب برف و سیلاب، تبخیر و تعرق، خشکسالی و غیره اهمیت زیادی دارد. امروزه با گسترش مدل­های هوشمند و تجربی در علوم مختلف، از جمله اقلیم شناسی و لزوم پیش­بینی­های دقیقتر، جایگزینی آنها به جای مدل های قدیمی اهمیت پیدا می­کند. یکی از این روش­ها، شبکه­های عصبی مصنوعی از مؤلفه­های هوش مصنوعی است که یکی از مهمترین کاربردهای آن ­در زمینه علوم جوی، پیش بینی و محاسبه پارامترهای اقلیم­شناسی است. در این تحقیق با استفاده از متغیرهای میانگین رطوبت نسبی، میانگین سرعت باد، مجموع ساعات آفتابی، میانگین حداقل و حداکثر دمای ماهانه به عنوان ورودی شبکه پرسپترون چندلایه (MLP)، میانگین حداکثر دمای ماهانه ایستگاه سینوپتیک اردبیل پیش­بینی شد. پارامترهای مذکور سال­های آماری 1985 تا 2005 را در بر می­گیرند. از 21 سال دوره آماری موجود، حدود 85 درصد آن یعنی 18 سال (216 ماه) برای آموزش شبکه و 3 سال (36 ماه) باقیمانده در مرحله آزمون شبکه به کار برده شده است. بدین منظور از امکانات و توابع موجود در نرم افزار MATLAB بهره­گرفته شد و برای هر ماه یک شبکه با خطای کمتر از 5 درصد طراحی گردید. پس از بررسی شاخص­های عملکرد شبکه، از جمله ضریب تعیین، مجذور میانگین مربعات خطا، میانگین مربعات خطا، میانگین مطلق خطا، میانگین درصد خطا و ضریب همبستگی مشاهده شد که پیش­بینی دمای حداکثر با دقت قابل قبولی انجام شده است؛ به گونه­ای که میزان ضریب همبستگی آن 99/0 و بیشترین اختلاف آن با داده­های واقعی برابر 83/0 درجه سانتیگراد بوده است.
۲۷.

پیش آگاهی و برآورد بارش یزد با استفاده از شبکه های عصبی مصنوعی

کلیدواژه‌ها: شبکه های عصبی مصنوعی یزد الگوریتم ژنتیک بارش پیش آگاهی

حوزه های تخصصی:
تعداد بازدید : ۱۵۸۷ تعداد دانلود : ۷۲۱
بارش یکی از مهمترین داده های ورودی به سیستم های هیدرولوژیکی محسوب می شود که مطالعه و اندازه گیری آن در اکثر موارد برای مطالعات رواناب، خشکسالی، آبهای زیرزمینی، سیلاب، رسوب و ... لازم و ضروری است. هدف این مقاله پیش آگاهی مقادیر بارش ماهانه یزد با استفاده از شبکه های عصبی مصنوعی است. در این تحقیق از داده های بارش ماهانه طی دوره آماری 53 سال (1950-2003) و شبکه های عصبی مصنوعی به عنوان یک روش غیر خطی جهت پیش بینی بارش استفاده شده است. نتایج این تحقیق بعد از آزمون شبکه با لایه های پنهان و با ضرایب یادگیری مختلف نشان داد که استفاده از شبکه های عصبی مصنوعی با یک پرسپترون 2 لایه پنهان با ضریب یادگیری 1/0 و مومنتم 7/0 مدل نسبتاً بهتری را ارائه می کند و همچنین بعد از آموزش مجدد شبکه و آزمون شبکه با لایه های پنهان و ضرایب مختلف یادگیری در ترکیب با الگوریتم ژنتیک نشان داد که ترکیب شبکه با ویژگی های مذکور با الگوریتم ژنتیک باعث کاهش خطا و افزایش سرعت محاسبات شده و مدل بهتری را ارائه می کند. لازم به ذکر است که تصادفی کردن داده ها برای آموزش شبکه باعث افزایش دقت و بهتر بودن مدل می شود.
۲۸.

پیش بینی بارش اصفهان با استفاده از شبکه های عصبی مصنوعی(مقاله علمی وزارت علوم)

کلیدواژه‌ها: اصفهان شبکه های عصبی مصنوعی پیش بینی الگوریتم ژنتیک بارش

حوزه های تخصصی:
تعداد بازدید : ۱۱۷۷ تعداد دانلود : ۵۶۳
بارش مهمترین سنجه­ی هواشناسی و اقلیمی است. در این پژوهش به منظور پیش­بینی بارش اصفهان از داده های بارش ماهانه­ی ایستگاه همدید اصفهان در بازه­ی آماری (1951-2009) به مدت 59 سال و به دلیل رفتار غیرخطی بارش از شبکه های عصبی مصنوعی جهت پیش­بینی آن بهره گرفته شد. در این ارتباط، 70 درصد داده­ها جهت آموزش شبکه و 30 درصد داده ها برای تست و اعتبار سنجی اختصاص داده شد. نتایج پژوهش بعد از آزمون شبکه با لایه های پنهان و با ضرایب یادگیری مختلف آشکار ساخت که استفاده از شبکه های عصبی مصنوعی با یک پرسپترون با 2 لایه پنهان و ضریب یادگیری 4/0 نسبت به سایر حالت­ها و معماری شبکه، مدل نسبتاً بهتری را ارائه می­کند. به بیانی دیگر، داده­های پیش بینی شده بارش ماهانه توسط شبکه با چنین ساختار و معماری، بیشتر با واقعیت انطباق دارد. آموزش مجدد شبکه و آزمون شبکه با لایه های پنهان و ضرایب مختلف یادگیری در ترکیب با الگوریتم ژنتیک نیز نشان داد که ترکیب شبکه با ویژگی های مذکور با الگوریتم ژنتیک باعث کاهش خطا و افزایش سرعت محاسبات شده و مدل بهتری را ارائه می کند. بطور کلی می توان گفت که شبکه عصبی به خوبی رابطه غیر خطی بین مقادیر ماهانه بارش را با توجه به آموزش شبکه با خصوصیات ذکر شده، پیش بینی می کند. در عین حال، نتایج حاصل از تصادفی کردن داده­ها تفاوتی چندانی با مرتب بودن داده­ها برای آموزش شبکه ندارد.
۲۹.

پیش بینی اثر جهانی شدن اقتصاد بر توزیع درآمد در جامعة روستایی ایران با استفاده از شبکة عصبی مصنوعی(مقاله علمی وزارت علوم)

کلیدواژه‌ها: ایران جهانی شدن شبکه های عصبی مصنوعی اقتصاد روستایی درآمد روستایی

حوزه های تخصصی:
  1. حوزه‌های تخصصی مدیریت مدیریت دولتی مباحث ویژه مدیریت دولتی
  2. حوزه‌های تخصصی اقتصاد اقتصاد بین الملل چشم انداز جهانی
  3. حوزه‌های تخصصی مدیریت مدیریت دولتی مباحث ویژه مدیریت دولتی جهانی سازی
تعداد بازدید : ۱۷۶۶ تعداد دانلود : ۸۶۰
جهانی شدن فرایندی است با مشخصة کلی افزایش چشمگیر تجارت و مبادلات بین المللی و یکپارچگی بازارها در مقیاس جهانی، که خواسته یا ناخواسته در حال¬ وقوع است. پژوهش حاضر به نحوة اثرپذیری متغیرهای اقتصادی از این پدیده می پردازد و راهنمایی برای اتخاذ تصمیمات کارآ از سوی سیاست گذاران تلقی می شود. در این پژوهش با استفاده از داده های مربوط به دورة 1350-1386 در اقتصاد ایران، پس از مقایسة کارآیی مدل خودرگرسیو¬ن برداری و مدل ¬تصحیح خطای برداری و شبکة عصبی مصنوعی در پیش بینی، از شبکة¬ عصبی طراحی¬شده به¬منظور پیش بینی ضریب جینی روستایی ایران برای سال های 1387 و 1388 در سه¬ سناریو استفاده می شود. سپس، به¬منظور بررسی اثر جهانی شدن بر توزیع درآمد در جامعة روستایی ایران، با اجرای سناریوی چهارم برای دورة زمانی 1387 تا 1395، پیش بینی برون نمونه¬ای انجام می¬پذیرد. نتایج پژوهش نشان می دهد که مدل شبکة عصبی مصنوعی در پیش بینی میزان آتی نابرابری درآمد در جامعة روستایی ایران عملکردی بهتر دارد؛ هم چنین، با گسترش جهانی شدن، نابرابری درآمد روستایی در ایران تمایل به کاهش دارد.
۳۰.

پیش بینی مصرف انرژی ایران با استفاده از مدل ترکیبی الگوریتم ژنتیک-شبکه عصبی مصنوعی و مقایسه آن با الگوهای سنتی(مقاله علمی وزارت علوم)

کلیدواژه‌ها: شبکه های عصبی مصنوعی مصرف انرژی الگوریتم ژنتیک

حوزه های تخصصی:
  1. حوزه‌های تخصصی مدیریت مدیریت دانش و IT منطق فازی و هوش مصنوعی
  2. حوزه‌های تخصصی مدیریت گروههای ویژه مدیریت انرژی
تعداد بازدید : ۲۶۸۳ تعداد دانلود : ۱۲۱۷
طی دهه های اخیر، انرژی در کنار سایر عوامل تولید نقش تعیین کننده ای در رشد اقتصادی کشورها داشته و اهمیت آن همچنان رو به افزایش است. وابستگی روزافزون به انرژی موجب تعامل این بخش با سایر بخشهای اقتصادی شده و سرعت در روند رشد و توسعه ی اقتصادی را وابسته به سطح مصرف انرژی کرده است، به طوری که طی دهه های اخیر، رشد اقتصادی جهان و روند صنعتی شدن، موجب افزایش تقاضا و مصرف انرژی شده است. در این صورت به منظورکنترل پارامترهای عرضه و تقاضای انرژی و برنامه ریزی صحیح در هدایت مصرف آن بایستی مصرف انرژی را به صورت دقیق پیش بینی نمود. هدف از این مقاله کاربست مدل ترکیبی شبکه های عصبی مصنوعی و الگوریتم ژنتیک در پیش بینی مصرف انرژی ایران می باشد. لذا در این بررسی، از داده های سالانه مصرف انرژی کشور به عنوان متغیر خروجی مدل پیش بینی و از داده های سالانه جمعیت کل کشور، تولید ناخالص داخلی، واردات و صادرات به عنوان متغیرهای ورودی مدل های پیش بینی استفاده شده است. در پایان به منظور مقایسه نتایج پیش بینی مدل ترکیبی مذکور با مدل های شبکه ی عصبی و رگرسیون چند متغیره، از شاخص های ارزیابی خطای استاندارد نسبی (RSE)، میانگین خطا (ME) و مجذور میانگین مربعات خطا (RMSE) استفاده شد. نتایج ارزیابی نشان داد که الگوی ترکیبی شبکه های عصبی و الگوریتم ژنتیک (ANN-GA)، نسبت به سایر مدل ها دارای بالاترین دقت در پیش بینی مصرف انرژی کشور می باشد.
۳۱.

برآورد میزان تغییرات بارندگی با استفاده از تلفیق تکنیک شبکه های عصبی مصنوعی و زمین آمار در شمال غرب ایران(مقاله علمی وزارت علوم)

کلیدواژه‌ها: شبکه های عصبی مصنوعی شمال غرب ایران کریجینگ الگوریتم پس انتشار خطا برآورد مکانی ـ زمانی

حوزه های تخصصی:
تعداد بازدید : ۲۲۲۱ تعداد دانلود : ۱۰۱۶
ضرورت آگاهی از وضعیت منابع آب و نزولات جوی در مناطق مختلف برای اجرای طرح های آبی از یک سو، و فقدان شبکه ای مطلوب از ایستگاه های اندازه گیری پارامترهای هواشناسی از سوی دیگر، اهمیت استفاده از روش های غیرمستقیم را برای تخمین پارامترهای اقلیمی در بسیاری از مناطق کشور آشکار می سازد. پیش بینی تغییرات اقلیمی حاکم بر هر منطقه و مدل سازی های اقلیمی و هیدرولوژیکی، مستلزم در دسترس بودن اطلاعات درازمدت و هم زمانِ بارش در قالب های مکانی و زمانی در ایستگاه های باران سنجی است. به دلیل عدم کفایت ایستگاه های ثبت بارندگی در گذشته، دسترسی به این اطلاعات در بسیاری از مناطق کشور با محدودیت هایی همراه است و پیاده سازی این مدل ها در مناطق مذکور عملاً ناممکن می نماید. استفاده از شبکه های عصبی مصنوعی (ANN) امکان برآورد این اطلاعات را در ایستگاه های پراکندة باران سنجی، و در درازمدت حتی در سال هایی که منطقه فاقد ایستگاه های ثبت بارش بوده است، فراهم می کند. در این تحقیق برای برآورد آمار میانگین بارندگی ماهانه و فصلی و سالانه در 305 ایستگاه هواشناسی موجود در سه استان اردبیل و آذربایجان شرقی و آذربایجان غربی در دو دهه پیش از تأسیس این ایستگاه ها، از 36600 داده ثبت شدة آمار بارندگی ماهانه در دورة ده ساله 2004-1995 استفاده شد. این داده ها به عنوان ورودی برای آموزش شبکه های عصبی با الگوریتم پس انتشار خطا به کار گرفته شدند. طول و عرض جغرافیایی، ارتفاع، شیب، عدد ماه و میانگین بارندگی ماهانه 5 ایستگاه نزدیک تر به هر ایستگاه نیز به عنوان پارامترهای ورودی شبکه انتخاب شدند. ابتدا شبکه عصبی برای دوره ده ساله 2004-1995 آموزش داده شد و دقتی معادل (84/0=R) به دست آمد. پس از آموزش شبکه عصبی، اقدام به برآورد داده های میانگین بارندگی ماهانه و فصلی و سالانه در دوره زمانی 1994-1975 در ایستگاه های موجود در منطقه مطالعاتی گردید. دقت شبکه عصبی در این برآورد معادل 7/0، 78/0 و 88/0 به ترتیب برای تخمین مقادیر میانگین بارندگی ماهانه و فصلی و سالانه در سطح منطقه مورد مطالعه بود. میزان این دقت برای هر سه استان به صورت مجزا اعتبارسنجی شد و بیشترین دقت در استان آذربایجان غربی (معادل 78/0) به دست آمد. سپس اقدام به تولید نقشه های درون یابی شده میانگین بارندگی ماهانه و فصلی و سالانه در سطح منطقه مطالعاتی، با استفاده از تخمینگر زمین آماری کریجینگ براساس داده های برآوردشده با تکنیک شبکه های عصبی و داده های موجود ثبت شده در ایستگاه ها در دوره زمانی 2004-1975 گردید. نتایج این تحقیق امکان دسترسی به آمار پیوسته و درازمدت بارندگی و همچنین بررسی تغییرات توزیع مکانی بارندگی را در منطقه شمال غرب کشور از گذشته تا امروز میسر می سازد.
۳۲.

ارائه یک الگوی شبکه عصبی برای تخمین روابط هزینه - فعالیت در بودجه ریزی بر مبنای عملکرد(مقاله علمی وزارت علوم)

کلیدواژه‌ها: شبکه های عصبی مصنوعی هزینه یابی بر مبنای فعالیت بودجه ریزی بر مبنای عملکرد تخمین روابط هزینه

حوزه های تخصصی:
  1. حوزه‌های تخصصی اقتصاد اقتصاد خرد مالیه بخش عمومی بودجه،کسری و قروض بودجه،سیستم های بودجه
  2. حوزه‌های تخصصی اقتصاد روش های ریاضی و کمی روش های آماری و اقتصادسنجی:موضوعات خاص شبکه های عصبی و موضوعات مربوطه
تعداد بازدید : ۲۱۲۴ تعداد دانلود : ۱۰۵۴
چگونگی مرتبط کردن داده های عملکردی با بودجه به عنوان یکی از مفاهیم اساسی بودجه ریزی بر مبنای عملکرد، از دغدغه های پژوهشگران بودجه ریزی و مدیران است. نحوه انتساب فعالیت ها به منابع و مشخص کردن سهم محرک های منبعی، یکی از پیچیده ترین بخش های بودجه ریزی بر مبنای عملکرد است. در اغلب روش های مرسوم برای هزینه یابی و بودجه ریزی، معمولاً فرض می شود رابطه ای خطی بین فعالیت ها و هزینه ها وجود دارد. در حالی که یک تابع هزینه، در عمل، همیشه خطی نیست و خطی فرض کردن آن، منجر به محاسبات اشتباه در بودجه فعالیت ها، خروجی ها و برنامه ها خواهد شد. در مقاله حاضر، برای حل مسئله تخمین رابطه بین فعالیت ها و منابع (هزینه ها) از رویکرد شبکه های عصبی مصنوعی استفاده شده است. برای آموزش و آزمون مدل شبکه عصبی، از داده های بانک تجارت ایران استفاده شده است. ویژگی متمایزکننده این الگو نسبت به سایر الگوها، در نظر گرفتن روابط بین هزینه – مرکز هزینه، به صورت غیرخطی است. معماری خاص شبکه پیشنهادی (معماری چندلایه پیش خور با ارتباطات پرشی) باعث می شود تا علاوه بر پیش بینی هزینه، مقدار سهم محرک های منبعی نیز از مدل قابل استخراج باشد. مقایسه نتایج به دست آمده از الگوی پیشنهادی برای مقدار محرک ها با نتایج نظرسنجی از خبرگان برای محرک های منبعی، اختلاف قابل قبولی را نمایش می دهد.
۳۳.

مقایسه عملکرد الگوریتم های مختلف شبکه عصبی مصنوعی در مدل سازی بارندگی فصلی مطالعه موردی؛ ایستگاه های منتخب استان خوزستان(مقاله علمی وزارت علوم)

کلیدواژه‌ها: شبکه های عصبی مصنوعی استان خوزستان منابع آب بارش فصلی

حوزه های تخصصی:
  1. حوزه‌های تخصصی جغرافیا جغرافیای طبیعی آب و هواشناسی
  2. حوزه‌های تخصصی جغرافیا فنون جغرافیایی روش های کمی در جغرافیا
تعداد بازدید : ۱۱۴۸ تعداد دانلود : ۴۰۰۹
بارندگی یکی از اجزای اصلی چرخه­ی هیدرولوژی است. این فرآیند پیچیده به عوامل متعدد اقلیمی وابسته است. شبکه های عصبی مصنوعی در چند دهه اخیر و در مطالعات صورت گرفته برای مدل سازی سیستم های پیچیده و غیر خطی قابلیت بسیار بالایی از خود نشان داده است. تحقیق حاضر در سه ایستگاه منتخب از استان خوزستان صورت گرفته است. برای این منظور از داده­های بارندگی ماهانه سه ایستگاه هواشناسی استان به مدت 48سال، (1340-1387)، استفاده شده است. سپس با استفاده از این مقادیر به عنوان خروجی­های هدف، شبکه­های مختلفی با ساختار­های متفاوت تعریف و آموزش داده شد. در نهایت قابلیت شبکه برای تخمین بارش با استفاده از قسمتی از داده­ها که در آموزش شبکه وارد نشدند، مورد بررسی قرار گرفت. در این تحقیق شبکه­های MLP و RBF با تغییراتی در تعداد لایه­های میانی، تعداد نرون­ها و الگوریتم­های آموزش MOMو LM وCG به منظور پیش­بینی بارش فصلی به کار گرفته شد. نتایج نشان داد که برای ایستگاه اهواز شبکه RBF با توپولوژی 1-4-6 و یادگیریLM دارای بیشترین مقدار ضریب همبستگی برابر 96/0 و کمترین MSE برابر 044/0 است. برای ایستگاه آبادان شبکه RBF با توپولوژی 1-7-6-6 و یادگیریLM دارای بیشترین مقدار ضریب همبستگی برابر 92/0 و کمترین MSE برابر 062/0 است. برای ایستگاه دزفول شبکه MLP با توپولوژی 1-4-3-6 و یادگیریLM دارای بیشترین مقدار ضریب همبستگی برابر 94/0 و کمترین MSE برابر 034/0 است.
۳۴.

شبیه سازی فرایند بارش – رواناب در زیرحوضه ی جنوبی رودخانه ی قره سو با استفاده از مدل شبکه های عصبی مصنوعی(ANNs)(مقاله علمی وزارت علوم)

کلیدواژه‌ها: شبکه های عصبی مصنوعی پیش بینی شبیه سازی رواناب زیرحوضه ی جنوبی رودخانه ی قره سو

حوزه های تخصصی:
  1. حوزه‌های تخصصی جغرافیا جغرافیای طبیعی آب و هواشناسی
  2. حوزه‌های تخصصی جغرافیا فنون جغرافیایی روش های کمی در جغرافیا
تعداد بازدید : ۲۰۸۵ تعداد دانلود : ۴۷۳
در سال های اخیر، عدم کنترل به موقع روانابِ حاصل از بارش های غیر مترقبه، عامل تهدید کننده ای در وقوع سیل محسوب می شود. پیش بینی بارش در مدیریت و هشدار معضل سیل نقش مهمی بر عهده دارد. به منظور جلوگیری از خسارات ناشی از سیل و سعی در کنترل و مهار آن، پیش بینی رواناب امری اجتناب ناپذیر به نظر می رسد زیرا با اطلاع از میزان و شدّت بارندگی، می توان امکان وقوع سیل را پیش بینی و اقدامات لازم را به عمل آورد. حوضه ی آبریز رودخانه ی قره سو به ویژه زیرحوضه ی جنوبی این رودخانه، از حوضه های سیل خیز کشور است لذا در این پژوهش، مقادیر رواناب این زیرحوضه، بر اساس آمار بلند-مدت 4 ایستگاه هیدرومتری نیر، پل الماس، گیلانده و نمین و با استفاده از برخی پارامترهای اقلیمی مؤثر بر میزان رواناب این حوضه (شامل متوسط ماهانه ی دما، رطوبت نسبی، بارندگی، تبخیر) و رواناب سال های قبل و با بهره گیری از مدل شبکه های عصبی مصنوعی(ANNs) مدل سازی گردید. برای انجام محاسبات، از نرم افزار مت لب 7 استفاده شد. ورودی های شبکه، داده های متوسط ماهانه ی متغیرهای بارش، دبی رودخانه، دما، رطوبت نسبی و تبخیر سال های قبل و خروجی شبکه، مقادیر متوسط پیش-بینی شده ی دبی ماهانه ی زیرحوضه ی جنوبی رودخانه ی قره سو می باشد. این آمار، بازه ی زمانی سال های 1972 تا 2010 را در بر می گیرد. حدود 90 درصد داده ها (35 سال یا 420 ماه) برای آموزش و 10 درصد باقی مانده (4 سال یا 48 ماه)، جهت تست شبکه به کار رفته و برای هر ماه، یک شبکه با خطای کمتر از 5 درصد طراحی شد. تحلیل نتایج خروجی شبکه ی عصبی نشان داد که این مدل، توانایی بهتر و دقت بالاتری برای شبیه سازی بارش - رواناب نسبت به روش های آماری معمول دارد. نتایج همچنین نشان داد که با افزایش فاکتورهای ورودی به شبکه، دقت بالاتری در پیش بینی به دست می آید. میزان ضریب همبستگی شبکه، 998/0 و میانگین خطای هر شبکه با داده های واقعی، 6/2 درصد به دست آمد. نتایج شاخص های عملکرد شبکه (ضریب تعیین، مجذور میانگین مربعات خطا، میانگین مطلق خطا و ضریب همبستگی) نیز نشان دادند که مقادیر ارائه شده برای پیش بینی رواناب حوضه ی مورد مطالعه، قابل قبول است.
۳۵.

پیش بینی سطح مدیریت سود با استفاده از شبکه های عصبی مصنوعی(مقاله علمی وزارت علوم)

کلیدواژه‌ها: شبکه های عصبی مصنوعی اقلام تعهدی اختیاری پیش بینی مدیریت سود

حوزه های تخصصی:
  1. حوزه‌های تخصصی مدیریت مدیریت دانش و IT منطق فازی و هوش مصنوعی
  2. حوزه‌های تخصصی مدیریت مدیریت مالی – حسابداری تئوریهای حسابداری سود
تعداد بازدید : ۱۳۳۳ تعداد دانلود : ۷۴۱
اکثر تحقیقات انجام شده در حوزه مدیریت سود به بررسی انگیزه ها و عوامل موثر بر سطح مدیریت سود پرداخته اند، ولی از این متغیرها به طور مستقیم برای پیش بینی سطح مدیریت سود استفاده نشده است. در نتیجه تنها همبستگی بین مدیریت سود و این متغیرها بررسی شده است. از این رو، طراحی یک مدل برای پیش بینی سطح مدیریت سود به منظور کاهش ریسک بحران های مالی ناشی از مدیریت سود و کمک به سرمایه گذاران، اعتبار دهندگان و سایر استفاده کنندگان از اطلاعات صورت های مالی، برای اجتناب از تحمل زیان های عمده در بازار سرمایه ضروری به نظر می رسد. در این پژوهش با استفاده از متغیرهای موجود در ادبیات مدیریت سود و بکارگیری مدل شبکه های عصبی مصنوعی سطح مدیریت سود پیش بینی شده است. شبکه با استفاده از اطلاعات سال های 1379 تا 1387 مورد آزمون و آموزش قرار گرفت و در نهایت ساختار مطلوب با دقت 0.94 درصد در مرحله آموزش و 0.69 درصد در مرحله آزمون انتخاب شد.
۳۶.

ساختارهای خطی و غیر خطی در پیش بینی بازده سهام

کلیدواژه‌ها: شبکه های عصبی مصنوعی مدل سه عاملی فاما و فرنچ مدل قیمت گذاری دارایی های سرمایه ای پیش بینی بازده سهام

حوزه های تخصصی:
تعداد بازدید : ۱۳۱۲ تعداد دانلود : ۷۵۸
پیش بینی بازده سهام به کمک کشف الگوهای رفتاری فرآیند مولد قیمت سهام امکان پذیر است. میزان موفقیت درکشف اینگونه الگوهای رفتاری، میزان کارایی پیش بینی را مشخص می کند. به عبارت دیگر فرآیند مولد قیمت سهام را می توان به عنوان یک الگوی دینامیکی بررسی کرد. این فرآیند ممکن است به صورت مدل های خطی، مدل های غیر خطی و یا مدل های تصادفی به دست آید. این پژوهش ساختارهای خطی پیش بینی کننده را در قالب دو مدل قیمت گذاری دارایی های سرمایه ای و سه عاملی فاماو فرنچ و ساختارهای غیرخطی را به صورت شبکه های عصبی تشریح می نماید.
۳۷.

یک مدل تلفیقی از شبکههای عصبی مصنوعی، تبدیل موجک و ARMA در پیشبینی تقاضای آب شهری

کلیدواژه‌ها: شبکه های عصبی مصنوعی پیش بینی مدل تلفیقی ARMA تقاضای آب

حوزه های تخصصی:
  1. حوزه‌های تخصصی مدیریت مدیریت دانش و IT منطق فازی و هوش مصنوعی
  2. حوزه‌های تخصصی مدیریت مدیریت صنعتی مدیریت تکنولوژی سیستم های تحقیق و توسعه تکنولوژی
تعداد بازدید : ۱۳۴۳ تعداد دانلود : ۵۸۰
پیش بینی تقاضای آب شهری کمک موثری است به مدیران و بهره برداران سیستم های آب شهری میباشد تا بتوانند نسبت به مدیریت صحیح مصرف اقدام نمایند. در این راستا پیشبینی دقیق تقاضا از این نیاز حیاتی در دورههای زمانی مختلف حایز اهمیت میباشد. در این پژوهش با طراحی یک روش جدید که تلفیقی از مدلهای خطی و غیرخطی است، به بررسی روند تقاضای روزانه آب شهر تهران و عوامل موثر بر تقاضای روزانه این حامل پرداخته شد. دراین تحقیق، تقاضای روزانه آب شهری براساس مدلهای ARMA، شبکه عصبی مصنوعی و مدل تلفیقی برای 10 روز آینده به صورت ""گام به گام""پیشبینی گردید. در طراحی شبکه عصبی مصنوعی و مدل تلفیقی، عوامل موثر بر تقاضای روزانه آب شهری، دمای هوا (حداقل، حداکثر و متوسط)، روزهای هفته، ایام تعطیلات و روزهای خاص در نظر گرفته شد. نتایج حاصل از به کارگیری معیارهای ارزیابی دقت پیشبینی نشان میدهد مدل تلفیقی نسبت به بقیه الگوها دارای خطای کم و دقت بالایی در پیشبینی تقاضای روزانه آب شهری است. پساز مدل تلفیقی، شبکه عصبی مصنوعی و فرآیند ARMA به ترتیب در اولویتهای بعدی قرار گرفتند.
۳۸.

مقایسه دقت رویکردهای ماشین بردار پشتیبان و شبکه های عصبی مصنوعی در پیش بینی سود هر سهم شرکت های پذیرفته شده در بورس اوراق بهادار تهران(مقاله علمی وزارت علوم)

کلیدواژه‌ها: شبکه های عصبی مصنوعی سود هر سهم ماشین بردار پشتیبان پیش‎بینی شرکت های پذیرفته شده در بورس اوراق بهادار تهران

حوزه های تخصصی:
  1. حوزه‌های تخصصی اقتصاد اقتصاد مالی بازارهای مالی پیش بینی های مالی
  2. حوزه‌های تخصصی اقتصاد روش های ریاضی و کمی روش های آماری و اقتصادسنجی:موضوعات خاص شبکه های عصبی و موضوعات مربوطه
تعداد بازدید : ۱۱۷۴ تعداد دانلود : ۷۵۳
سهامداران جهت گرفتن تصمیم های سرمایه گذاری مناسب، نیازمند اطلاعاتی هستند که آنها را در گرفتن بهترین تصمیم یاری رساند. در میان اطلاعات موجود، اطلاعات مربوط به سود پیش بینی شده هر سهم از نظر استفاده کنندگان با اهمیت تلقی می شود. از طرفی شرکت ها برای جذب سرمایه گذاران سعی می کنند سود هر سهم را با بیشترین دقت پیش بینی کنند. بنابراین، مقاله حاضر به دنبال ارائه مدلی جهت بهبود پیش بینی سود هر سهم شرکت های پذیرفته شده در بورس اوراق بهادار تهران با استفاده از رویکرد های نوین هوش مصنوعی است. برای این منظور ابتدا عوامل مؤثر بر سود هر سهم سال آتی از پژوهش های داخلی و خارجی استخراج شد، سپس با استفاده از اطلاعات مالی شرکت های نمونه در بازه زمانی سال های 1384 تا 1391 و به کارگیری روش ماشین بردار پشتیبان و شبکه های عصبی مصنوعی، مدلی هایی جهت پیش بینی سود هر سهم طراحی گردید. مدل ماشین بردار پشتیبان توانست سود هر سهم سال آتی شرکت های نمونه را با میزان خطای مطلوب 5 درصد پیش بینی کند. این مدل سود هر سهم سال جاری را با ضریب تأثیر 25 درصد به عنوان مؤثرترین متغیر برای پیش بینی سود هر سهم آتی معرفی می کند. همچنین نتایج نشان می دهد که مدل ماشین بردار پشتیبان در مقایسه با مدل شبکه های عصبی مصنوعی عملکرد مشابهی دارد.
۳۹.

پیش بینی سطح سازگاری نوجوانان بر اساس ویژگی های روان شناختی با استفاده از مدل های رگرسیون و شبکه های عصبی مصنوعی(مقاله علمی وزارت علوم)

نویسنده:

کلیدواژه‌ها: سازگاری شبکه های عصبی مصنوعی پیش بینی رگرسیون ویژگی های روان شناختی

حوزه های تخصصی:
تعداد بازدید : ۸۸۸ تعداد دانلود : ۳۷۷
زمینه: پژوهش حاضر یک بررسی در رابطه با ویژگی های روان شناختی نوجوانان و سطوح سازگاری آنها می باشد. با توجه به مبانی نظری در مورد روابط متقابل بین این مفاهیم از یک مدل سنتی مبتنی بر همبستگی و یک مدل نوین مبتنی بر پردازش موازی داده ها استفاده شده است. هدف: هدف از پژوهش حاضر بررسی توانمندی هر یک از مدل های یاد شده در پیش بینی سطوح سازگاری از طریق اندازه های مربوط به ویژگی های روان شناختی نوجوانان است. روش: داده های اولیه مربوط به 18 ویژگی روان شناختی و 5 سطح سازگاری از طریق اجرای آزمون های CPI و AISS بر روی 456 دانش آموز پسر دبیرستانی شهر تهران به دست آمد. از مدل های همبستگی و تحلیل عاملی به منظور استخراج مؤلفه های اصلی، به عنوان عوامل پیش بینی کننده استفاده شد. بر این اساس یک ترکیب چهار عاملی از ویژگی های روان شناختی و پنج ویژگی مستقل به عنوان ترکیب بهینه در پیش بینی سطوح سازگاری با قابلیتی معادل ترکیب اولیه هجده عاملی شناسایی شدند. همچنین با توجه به انبوه عوامل اثرگذار و پیچیدگی های موجود در روابط میان آنها از مدل شبکه های عصبی مصنوعی نیز برای پیش بینی استفاده شد و توانمندی آن با مدل رگرسیون مورد مقایسه قرار گرفت. یافته ها: یافته ها نشان داد که مدل شبکه های عصبی مصنوعی در پیش بینی پنج سطح سازگاری توانمندتر از مدل رگرسیون می باشد و در صورت کاهش تعداد سطوح سازگاری به سه سطح، این قابلیت به نفع مدل رگرسیون تغییر می کند (0.001α<). بحث و نتیجه گیری: بر این اساس ویژگی های منحصر به فرد شبکه های عصبی مصنوعی نظیر پردازش موازی و تشخیص الگوهای ارتباط غیرخطی و پیچیده از طریق یادگیری و تجربه و قابلیت اختصاصی مدل رگرسیون در پیش بینی بر اساس اولویت بندی نقش هر یک از عوامل پیش بینی کننده از عوامل اصلی موفقیت هر یک از آنها تلقی می شود.
۴۰.

مدل سازی پیش بینی گردشگری ورودی به ایران با استفاده از روش های ARIMA و شبکه های عصبی فازی(مقاله علمی وزارت علوم)