مطالب مرتبط با کلید واژه " Neural Network "


۱.

Impact of Structural Components of Market on the Markup Level Based on Radial Basis Neural Network and Fuzzy Logic

کلید واژه ها: Fuzzy Logic Neural Network Market Structure Markup

حوزه های تخصصی:
تعداد بازدید : ۵۸۶ تعداد دانلود : ۲۸۰
This paper aims to evaluate the impact of several indices of market structure including entry to barrier, economies of scale and concentration degree on 140 active industries using the digit. Accordingly, we apply three methods including cost disadvantages ratio ( ), Herfindahl–Hirschman concentration index ( ) and Comanor and Willson criterion in order to assess the economies of scale and using the Roger's approach for measuring the Mark up level () in the industries. Hence, in this study first we cluster 140 industries according to the neural network under a radial basis function (RBF) and then identify the mark up level by extracting the rules indicating the relationships of structural variables of the market (i.e. concentration, entry to barrier and economies of scale).
۲.

طراحی و پیاده سازی یک سیستم تشخیص خودکار اختلال دوقطبی مبتنی بر سیگنال های مغزی

کلید واژه ها: اختلال دوقطبی شبکه های عصبی Neural Network سیگنال الکتریکی مغز (EEG) توان باندهای فرکانسی Bipolar Disorder

حوزه های تخصصی:
  1. حوزه‌های تخصصی روانشناسی روانشناسی مرضی تحولی اختلال خلقی دوقطبی
  2. حوزه‌های تخصصی روانشناسی عصب شناختی رفتاری جنبه زیستی اختلالها
تعداد بازدید : ۵۶۲ تعداد دانلود : ۳۳۶
زمینه و هدف: تشخیص صحیح بیماری اختلال دوقطبی به مهارت و تجربه بالای روان پزشک نیاز دارد و در بسیاری موارد شباهت های موجود در علائم منجر به تشخیص نادرست و حادتر شدن بیماری می شود. هدف این پژوهش استفاده از سیگنال های مغزی در زمینه تشخیص مؤثر این بیماری است. مواد و روش ها: مطالعه بر روی 12 فرد سالم و 12 فرد مبتلا به اختلال دوقطبی انجام شده است و سیگنال های الکتریکی مغز بر اساس استاندارد 20-10 و به صورت 16 کاناله ثبت شده است. با توجه به نتایج به دست آمده توسط سایر گروه های تحقیقاتی، این مطالعه بر روی سیگنال های الکتریکی کانال های F3، F4، P3، P4، T3، T4، O1 و O2 انجام شده است. دسته ویژگی های انرژی کل سیگنال و انرژی باندهای فرکانسی، فرکانس مرکزی، فرکانس ماکزیمم، ضرایب (AR یا Autoregressive) و توصیف های جورث از سیگنال های دریافتی استخراج شده و بر اساس این ویژگی ها افراد سالم و بیمار از طریق شبکه های عصبی پس انتشار و شعاع مبنا تفکیک شده اند. یافته ها: در بررسی دقیق ویژگی های استخراج شده می توان مشاهده نمود که ویژگی هایی چون فرکانس ماکزیمم، توان باند theta، تحرک و ضرایب AR مختلف می تواند مرجع مناسبی برای جداسازی گروه سالم از بیمار باشد. نتیجه گیری: در فرایند تشخیص خودکار، طبقه بندی کننده شعاع مبنا 3/87% و طبقه بندی کننده پس انتشار 7/94% قدرت تفکیک صحیح را دارا می باشند و براساس این نتایج می توانیم با صحت قابل قبولی افراد مبتلا به اختلال دوقطبی را از افراد سالم تشخیص دهیم.
۳.

طراحی و پیاده سازی یک سیستم تشخیص خودکار اختلال دوقطبی مبتنی بر سیگنال های مغزی

کلید واژه ها: اختلال دوقطبی شبکه های عصبی Neural Network سیگنال الکتریکی مغز (EEG) توان باندهای فرکانسی Bipolar Disorder

حوزه های تخصصی:
  1. حوزه‌های تخصصی روانشناسی روانشناسی مرضی تحولی اختلال خلقی دوقطبی
  2. حوزه‌های تخصصی روانشناسی عصب شناختی رفتاری جنبه زیستی اختلالها
تعداد بازدید : ۴۷۷ تعداد دانلود : ۱۹۷
زمینه و هدف: تشخیص صحیح بیماری اختلال دوقطبی به مهارت و تجربه بالای روان پزشک نیاز دارد و در بسیاری موارد شباهت های موجود در علائم منجر به تشخیص نادرست و حادتر شدن بیماری می شود. هدف این پژوهش استفاده از سیگنال های مغزی در زمینه تشخیص مؤثر این بیماری است. مواد و روش ها: مطالعه بر روی 12 فرد سالم و 12 فرد مبتلا به اختلال دوقطبی انجام شده است و سیگنال های الکتریکی مغز بر اساس استاندارد 20-10 و به صورت 16 کاناله ثبت شده است. با توجه به نتایج به دست آمده توسط سایر گروه های تحقیقاتی، این مطالعه بر روی سیگنال های الکتریکی کانال های F3، F4، P3، P4، T3، T4، O1 و O2 انجام شده است. دسته ویژگی های انرژی کل سیگنال و انرژی باندهای فرکانسی، فرکانس مرکزی، فرکانس ماکزیمم، ضرایب (AR یا Autoregressive) و توصیف های جورث از سیگنال های دریافتی استخراج شده و بر اساس این ویژگی ها افراد سالم و بیمار از طریق شبکه های عصبی پس انتشار و شعاع مبنا تفکیک شده اند. یافته ها: در بررسی دقیق ویژگی های استخراج شده می توان مشاهده نمود که ویژگی هایی چون فرکانس ماکزیمم، توان باند theta، تحرک و ضرایب AR مختلف می تواند مرجع مناسبی برای جداسازی گروه سالم از بیمار باشد. نتیجه گیری: در فرایند تشخیص خودکار، طبقه بندی کننده شعاع مبنا 3/87% و طبقه بندی کننده پس انتشار 7/94% قدرت تفکیک صحیح را دارا می باشند و براساس این نتایج می توانیم با صحت قابل قبولی افراد مبتلا به اختلال دوقطبی را از افراد سالم تشخیص دهیم.
۴.

The Comparison of Applying a Designed Model to Measure Credit Risk Between Melli and Mellat Banks

تعداد بازدید : ۱۲ تعداد دانلود : ۷
The main purpose of this paper is providing a model to calculate the credit risk of Melli bank clients and implement it at Mellat Bank. Therefore, the present study uses a multi-layered neural network method. The statistical population of this research is all real and legal clients of Melli and Mellat banks. Sampling method used in this research is a simple random sampling method. Friedman test was used to calculate the required number of samples in a random sampling method from Cochran formula (1977) and Friedman test was used to rank the factors affecting the credit risk. Friedman test was also performed using data from a completed questionnaire of active experts at the Melli Bank. Based on the results obtained from Friedman test, five important factors in the credit risk of real clients of the Melli Bank of Iran, type of occupation, guarantee value, loan amount, having return checks, the balance average, and the value of the guarantee, the amount of the loan, the average of the balance, having returned checks and deferred loans are the most important factors affecting the credit risk of legal clients, which have been used as inputs in the neural network model. The results of credit risk prediction using the neural network showed that the designed model has a high ability to predict the credit risk of real and legal clients of the Melli bank, while it did not have this ability for the Mellat bank.