In this paper, a model based on GMDH Type Neural Network, is used to predict gas price in the spot market while using oil spot market price, gas spot market price, gas future market price, oil future market price and average temperature of the weather. The results suggest that GMDH Neural Network model, according to the Root Mean Squared Error (RMSE) and Direction statistics (Dstat) statistics are more effective than OLS method. Also, first lag of gas price in the future market is the most efficient variable in predicting gas price in spot market.