فیلتر های جستجو:
فیلتری انتخاب نشده است.
نمایش ۸۱ تا ۱۰۰ مورد از کل ۲٬۸۴۳ مورد.
حوزه های تخصصی:
Chatbots is a computer software powered by artificial intelligence designed to replicate human interaction. It is also possible to refer to them as digital assistants that comprehend the capacities of humans. The bot interprets the user's intent, then processes their queries and provides prompt responses. Chatbots perform their most crucial role: to analyse and detect the intent of the user's request to extract relevant entities. AI-powered chatbots were introduced to improve operational efficiency, eventually saving organisational costs. This study investigates the role of system and service quality in customer satisfaction in banking services. One hundred forty-five usable data were used for analysis. Data were analysed using the Smart PLS. The results revealed that response time, usability, adaptability, empathy and responsiveness were insignificant for customer satisfaction. The result is important as it gave the insight point of customers with regards to the new services. Business organisations may need to introduce chatbots and perhaps make some improvements from time to time to provide better services.
Strategic Role of E-Public Procurements in the Formation of Sustainable and Inclusive Economy(مقاله علمی وزارت علوم)
حوزه های تخصصی:
The purpose of this study is to develop proposals for the introduction of ecological, digital, professional, innovation and social public procurements in the national strategy on E-Public Procurement Reform and the strategy of procurements on the company-customer level. The relevance of this study is due to the need to ensure the development of “smart”, sustainable, inclusive economy, which will help reduce unemployment, poverty, facilitate access for people with disabilities to work, create opportunities for the education of young people and adults, stimulate innovations, meet expectations of citizens, solve environmental problems, carry out digital transformations taking into consideration the best world practices. The share of public procurements in expenditures of the state budget and gross domestic product of Ukraine, the dynamics of the procurement’s participants in the B2G segment is evaluated. In Ukraine, the largest share of expenditures falls on security and social protection, however, the prosperity index in these categories is critical (“red” zone). In order to form The E-Public Procurement Strategy, the best world practices of introducing innovative, environmental and social procurement criteria should be considered. Strategic directions of public procurement, namely – ecological, digital, professional, innovation and social, which provide sustainable and inclusive development of economy, are proposed.
Assessment of E-Learning Readiness in the Primary Education Sector in Libya: A Case of Yefren(مقاله علمی وزارت علوم)
حوزه های تخصصی:
Over the last few decades, both developed and developing countries have an increasing trend in technology but with an enormous gap, particularly in the education sector. The e-learning following institutions can achieve benefits by evaluating their e-learning readiness through up-front analysis. Moreover, several models have been introduced to measure e-learning readiness for developed countries but these are not adequate for developing countries. This paper introduced the e-learning readiness evaluation model for the developing country, Libya, by considering the primary education sector. Furthermore, this study examines the e-learning level of readiness in the staff of the primary school. The purpose of this study is to evaluate the e-learning readiness of staff by directing factors of e-learning readiness i.e. cultural readiness, content readiness, and technology readiness. To achieve this objective, this paper collects data through questionnaires, and respondents are 110 staff member of primary schools in Yefren, Libya. Therefore, the multivariate analysis shows that the e-learning readiness factors have e significant relationship with the adoption of e-learning because most teachers are well prepared and ready. Likewise, results indicate that technology is the most significant factor instead of other e-learning readiness factors. According to the views of staff, there should be more content development training required for primary school staff. Thus, the demographic structure is inadequate to enhance the e-learning but the staff is ready for e-learning. Consequently, this study emphasizes the significance of cultural readiness and its relationship with the adoption of e-learning in primary education sectors’ development in Yefren, Libya.
Metaheuristic Algorithms for Optimization and Feature Selection in Cloud Data Classification Using Convolutional Neural Network(مقاله علمی وزارت علوم)
حوزه های تخصصی:
Cloud Computing has drastically simplified the management of IT resources by introducing the concept of resource pooling. It has led to a tremendous improvement in infrastructure planning. The major goals of cloud computing include maximization of computing resources with minimization of cost. But the truth is that everything has a price and cloud computing is no different. With Cloud computing there comes a number of security concerns which need to be addressed. Cloud forensics plays a vital role to address the security issues related to cloud computing by identifying, collecting and studying digital evidence in cloud environment. The aim of the research paper is to explore the concept of cloud forensic by applying optimization for feature selection before classification of data on cloud side. The data is classified as malicious and non-malicious using convolutional neural network. The proposed system makes a comparison of models with and without feature selection algorithms before applying the data to CNN. A comparison of different metaheuristics algorithms- Particle Swarm Optimization, Shuffled Frog Leap Optimization and Fire fly algorithm for feature optimization is done based on convergence rate and efficiency.
Range of Publications for E-Government Services: a Review and Bibliometric Analysis(مقاله علمی وزارت علوم)
حوزه های تخصصی:
With the rapid advancement of information and communication technology (ICT), public administration has adopted the concept of e-government. The academic literature produced many studies in the field of E-government (E-GOV) services, however, there is limited research on such services from the perspective of bibliometric and Network analysis. Therefore, this study aims to present a bibliometric and network analysis of the E-government services literature review obtained from the Scopus database, published between 2011 to 2021. This study uses a five-step method including (1) defining keywords, (2) initializing search outcomes, (3) inclusion and exclusion of some elements of the initial result, (4) compiling initial data statistics, and (5) undertaking analysis of data. The analysis starts by identifying more than 4,880 published articles related to E-government services published between 2011 and 2021. The study findings revealed that the highest number of publications on the E-government Service was in 2019 (102 articles), the top contributing affiliation was Brunel University London, the leading influential country was the USA, and the top contributing Source was Electronic Government. Furthermore, Lu J. occupied the first rank in the list of the most influential authors in terms of citations, while Weerakkody V. occupied the list of the top authors with high publications 20 papers. Likewise, this study showed that there is a collaboration among some authors. This research identified four research clusters by which researchers could be encouraged to widen the research of E-government services in the future. The bibliometric and network analysis of E-government services helps to graphically display the publication's assessment over time and identify domains of current studies' interests and potential directions for further studies. Finally, this research draws a roadmap for future investigation into E-government services.
Automatic Prediction and Identification of Smart Women Safety Wearable Device Using Dc-RFO-IoT(مقاله علمی وزارت علوم)
حوزه های تخصصی:
Women’s safety is very important for around the world and many anti-women safety incidents are happened in current decades. Women's criminality is on the rise in India, particularly on an hourly basis 1000 criminal cases are filed according to Indraprastha and Kannon organizations. The Internet of Things (IoT) application will assist women in difficult situations. This design with Dc-RFO-IoT has an emergency application that can be useful to provide critical thinking and suggestions to women in rescue time. When the emergency soft button is pushed, notifications are sent to registered contacts as well as to women's hotline lines with GPS and GSM. A GPS sensor is also used to transmit the position with longitude and latitude. Every one minute, the receiver sends a link to your location, updating them on your current position. The attacker may shut the victim's mouth and prevent her from requesting assistance. The speaker on this gadget generates high-frequency sound. It will raise the alarm in the surrounding area and make the attacker fearful. This IoT with deep learning application is giving accurate outcomes and measures are improved. The performance measures like accuracy 93.43%, sensitivity 92.87%, Recall 98.34%, safety ratio 97.34%, and F measure 97,89% had been improved these are outperformance the methodology and compete with present models.
Comparative study on Functional Machine learning and Statistical Methods in Disease detection and Weed Removal for Enhanced Agricultural Yield(مقاله علمی وزارت علوم)
حوزه های تخصصی:
Agriculture is one of the essential sources of occupation and revenue in India. Conferring to existing statistics, most agriculturalists are facing severe losses due to poor farming yield. Farming activities are challenged by various environmental factors that affect agricultural productivity to a greater extent. The present farming situation is above the average of the process involves more biochemical bases for managing the diseases and other destructing facts. The foremost problems they are facing in day-to-day farming tasks are crop or plant diseases affecting productivity. Also, the growth of weeds along with field crops has been another challenge. The technology has developed to rectify the problems using some machine learning algorithms like Random Forest algorithms, Decision trees, Naïve Bayes, KNN, K-Means clustering, Support vector machines. The result has been evaluated and observed through the performance evaluation metrics using confusion matrix, accuracy, precision, Sensitivity, specificity with the observations, research, and studies. The statistics have expressed the overall accuracy of 98% by achieving the detection of diseases in plants and by removing the weeds that ruin the growth of plants.
Bibliometric Analysis of Government Venture Capital(مقاله علمی وزارت علوم)
حوزه های تخصصی:
The bibliometric study aims to map and expand respective knowledge by establishing connections between important actors in academic research regarding the government venture capitals (GVCs). The scope is to analyze documents published on Scopus database starting from 2011 to 2020. Accordingly, the United States (U.S.) is the top country in all categories with China catching up. Alperovych, Quas, and Colombo are top co-authors. On the other hand, Leleux, Grilli, Lerner and Cumming are prolific authors. Articles by Grilli and Li Y are two most cited documents. Investments, venture capital, economics, public policy, and government are most co-occurrence index keywords. Research policy, venture capital, and journal of technology transfer, journal of business venturing and small business economics are top sources of cited documents. Closely associated themes with respect to the study of GVCs are government role in venture capital support, effective Innovation financing policies, performance differential, performance of portfolio companies, funding challenges and investment strategy, decision making model and critical success factors for IT startups. The analysis generated gaps and directions for future research consisting of fund’s structure and characteristics, key personnel’s work experience and network, geographic location, investment horizon, shareholding rights.
Unpacking the Dynamics of Digital Entrepreneurship: Managing Work-Family Boundaries among Women Entrepreneurs(مقاله علمی وزارت علوم)
حوزه های تخصصی:
The global spread of internet technology and the associated advancements are making it easier for women entrepreneurs to manage the work-family boundary. However, there is a need for more research on digital entrepreneurship (DE), especially on how different degrees of DE influence the success of work-family boundary management (WFBM). This study explores the effect of extreme, moderate, and mild pursuit of DE on women’s abilities to manage the boundary between work and family. This study uses a quantitative research method and collected data from 312 women entrepreneurs. The results show that DE enables women entrepreneurs to manage the work-family boundary. We found that with extreme DE, women are more likely to experience high levels of cross-role interruption behaviours and perceived boundary control, while with moderate DE, women experience high levels of identity centrality of work and family roles. Therefore, this study contributes to the literature on women’s DE by investigating different degrees of DE and its effects on work-family boundary management. The study also contributes to the literature on WFBM through examining the dynamics of DE in enabling women entrepreneurs to manage work-family boundaries to different extents. Therefore, this study captures the interplay between DE and managing work-family boundaries, which facilitates our understanding of women entrepreneurship and the role DE has in enabling the agentic potential of entrepreneurial actors.
شناسایی و اولویت بندی پیشایندهای عدم اشتراک گذاری دانش در بین کارکنان شرکت مجتمع صنعتی رفسنجان(مقاله علمی وزارت علوم)
منبع:
مدیریت دانش سازمانی سال ششم تابستان ۱۴۰۲ شماره ۲۱
141 - 182
حوزه های تخصصی:
هدف این پژوهش شناسایی و اولویت بندی پیشایندهای عدم اشتراک گذاری دانش در بین کارکنان شرکت مجتمع صنعتی رفسنجان بوده است. این پژوهش از نظر هدف، پژوهش کاربردی و بر اساس ماهیت و روش یک پژوهش توصیفی- پیمایشی می باشد. در این پژوهش ابتدا با استفاده از مطالعات کتابخانه ای عوامل شناسایی شده و در ادامه با استفاده از پرسشنامه به تائید و اولویت گذاری پرداخته شده است. خبرگان تحقیق حاضر 13 نفر بودند که به صورت غیراحتمالی انتخاب شدند و شامل مدیران و کارکنان ارشد شرکت مجتمع صنعتی رفسنجان بوده اند. با استفاده از نرم افزارهای SPSS 23 و Expert Choice به تجزیه و تحلیل داده ها پرداخته شد و از نرم افزار روش فرآیند سلسله مراتبی برای اولویت بندی عوامل استفاده شد. یافته های حاصل از داده های تحقیق نشان داد که پیشایندهای عدم اشتراک گذاری دانش عبارتند از: موانع فناورانه که دارای چهار زیرمولفه است و عدم وجود سامانه ها مهمترین زیرمولفه موثر بر عدم اشتراک گذاری دانش است. موانع سازمانی از جمله عوامل موثر دیگر است که دارای یازده زیرمولفه است و زیرمولفه عدم وجود مسئله یابی و حل مسئله موثرترین عامل بر عدم اشتراک دانش است. موانع مدیریتی نیز از جمله موانع عدم اشتراک دانش است که شامل شش زیرمولفه است و عدم حمایت از به اشتراک گذاری دانش جزو مهمترین عوامل موثر بر آن است. موانع فردی نیز از جمله موانع عدم اشتراک گذاری دانش است که شامل یازده زیرمولفه است و بی اعتمادی مهمترین زیرمولفه موثر بر عدم به اشتراک گذاری دانش شناسایی شده است. با توجه به نتایج می توان گفت که موانع فناورانه و نبود زیرساخت ها و فناوری ها مورد نیاز از جمله مهمترین عوامل موثر بر عدم اشتراک گذاری دانش است در حالی که عوامل فردی کمترین تاثیر را داشته یعنی کارکنان در عدم به اشتراک گذاری دانش کمترین تاثیر را دارند.
Investment Project Risk Simulation on the Use of Information Technologies as a Factor for Improving the Financial Safety of the Enterprise(مقاله علمی وزارت علوم)
حوزه های تخصصی:
The article justified the feasibility of an investment project by analysing the performance indicators while taking into account risk and uncertainty of the use of information technologies. The impact of the above calculations of the investment project results is due to the fact that the evaluation of the investment performance depends on the projected cash flows. The purpose of the article is to assess the impact of risks on making investment decisions using information technologies in order to increase the financial security of enterprises. Methodological and practical aspects of risk modelling of the investment project were further developed, using the Monte Carlo method, which allows to construct a model by minimizing data, as well as to maximize the value of data used in the model. This model involves the use of probability theory and random number tables. The results show the distribution of probabilities of the successful project variable and the coefficient of variation of the performance indicator, allowing the investor to take uncertainty into account when making a decision.
Factors Influencing Electronic Brand Love and E-Loyalty(مقاله علمی وزارت علوم)
حوزه های تخصصی:
This research aims to evaluate the effect of consumer traits, service quality, perception-based factors, customer satisfaction, and e-trust on electronic brand love and e-loyalty. In this study, a cross-sectional survey is conducted based on the questionnaire method to collect data from a sample of 300 customers of the Digikala Website in Isfahan, Iran. Structural equation modeling (SEM) is used to test the research hypotheses. According to the results, the service quality, consumer traits, and perception-based factors significantly affected customer satisfaction. Also, e-brand love had a significant impact on e-trust and e-loyalty; e-trust significantly affected e-brand love and e-loyalty, and e-brand love had a significant impact on e-loyalty. To the best of the authors’ knowledge, this research stands among the first to evaluate the factors affecting electronic brand love and loyalty. The evaluation of brand love on loyalty demonstrated that the greater the amount of love and fascination with a brand, the higher the positive effect on consumer loyalty. Overall, managers are recommended to do their best to eliminate misunderstandings and create an interest in consumers, ultimately leading to greater customer loyalty. Managers should pay more attention to brand experience dimensions, such as sensory marketing. In this regard, creating a brand community by e-retailers is very helpful.
F-MIM: Feature-based Masking Iterative Method to Generate the Adversarial Images against the Face Recognition Systems(مقاله علمی وزارت علوم)
حوزه های تخصصی:
Numerous face recognition systems employ deep learning techniques to identify individuals in public areas such as shopping malls, airports, and other high-security zones. However, adversarial attacks are susceptible to deep learning-based systems. The adversarial attacks are intentionally generated by the attacker to mislead the systems. These attacks are imperceptible to the human eye. In this paper, we proposed a feature-based masking iterative method (F-MIM) to generate the adversarial images. In this method, we utilize the features of the face to misclassify the models. The proposed approach is based on a black-box attack technique where the attacker does not have the information related to target models. In this black box attack strategy, the face landmark points are modified using the binary masking technique. In the proposed method, we have used the momentum iterative method to increase the transferability of existing attacks. The proposed method is generated using the ArcFace face recognition model that is trained on the Labeled Face in the Wild (LFW) dataset and evaluated the performance of different face recognition models namely ArcFace, MobileFace, MobileNet, CosFace and SphereFace under the dodging and impersonate attack. The F-MIM attack is outperformed in comparison to the existing attacks based on Attack Success Rate evaluation metrics and further improves the transferability.
Cucumber Leaf Disease Detection and Classification Using a Deep Convolutional Neural Network(مقاله علمی وزارت علوم)
حوزه های تخصصی:
Due to obstruction in photosynthesis, the leaves of the plants get affected by the disease. Powdery mildew is the main disease in cucumber plants which generally occurs in the middle and late stages. Cucumber plant leaves are affected by various diseases, such as powdery mildew, downy mildew and Alternaria leaf spot, which ultimately affect the photosynthesis process; that’s why it is necessary to detect diseases at the right time to prevent the loss of plants. This paper aims to identify and classify diseases of cucumber leaves at the right time using a deep convolutional neural network (DCNN). In this work, the Deep-CNN model based on disease classification is used to enhance the performance of the ResNet50 model. The proposed model generates the most accurate results for cucumber disease detection using data enhancement based on a different data set. The data augmentation method plays an important role in enhancing the characteristics of cucumber leaves. Due to the requirements of the large number of parameters and the expensive computations required to modify standard CNNs, the pytorch library was used in this work which provides a wide range of deep learning algorithms. To assess the model accuracy large quantity of four types of healthy and diseased leaves and specific parameters such as batch size and epochs were compared with various machine learning algorithms such as support vector machine method, self-organizing map, convolutional neural network and proposed method in which the proposed DCNN model gave better results.
Net Asset Value (NAV) Prediction using Dense Residual Models(مقاله علمی وزارت علوم)
حوزه های تخصصی:
Net Asset Value (NAV) has long been a key performance metric for mutual fund investors. Due to the considerable fluctuation in the NAV value, it is risky for investors to make investment decisions. As a result, accurate and reliable NAV forecasts can help investors make better decisions and profit. In this research, we have analysed and compared the NAV prediction performance of our proposed deep learning models, such as N-BEATS and NBSL, with the FLANN model in both univariate and multivariate settings for five Indian mutual funds for forecast periods of 15, 20, 45, 63, 126, and 252 days using RMSE, MAPE, and R2 as evaluation metrics. A large forecast horizon was chosen to assess the model's consistency, reliability, and accuracy. The result reveals that the N-BEATS model outperforms the FLANN and NBSL models in the univariate setting for all datasets and all prediction horizons. In a multivariate setting, the outcome demonstrates that the N-BEATS model outperforms the FLANN model across all datasets and prediction horizons. The result also shows that, as the number of forecast days grew, our suggested models, notably N-BEATS, maintained consistency and attained the highest R2 value throughout the longest forecast duration.
Efficient Machine Learning Algorithms in Hybrid Filtering Based Recommendation System(مقاله علمی وزارت علوم)
حوزه های تخصصی:
The widespread use of E-commerce websites has drastically increased the need for automatic recommendation systems with machine learning. In recent years, many ML-based recommenders and analysers have been built; however, their scope is limited to using a single filtering technique and processing with clustering-based predictions. This paper aims to provide a systematic year-wise survey and evolution of these existing recommenders and analysers in specific deep learning-based hybrid filtering categories using movie datasets. They are compared to others based on their problem analysis, learning factors, data sets, performance, and limitations. Most contributions are found with collaborative filtering using user or item similarity and deep learning for the IMDB datasets. In this direction, this paper introduces a new and efficient Hybrid Filtering based Recommendation System using Deep Learning (HFRS-DL), which includes multiple layers and stages to provide a better solution for generating recommendations.
State Regulation Improvement of the Military-Industrial Complex Development in Ukraine in Terms of Transition to Modern Information Technologies(مقاله علمی وزارت علوم)
حوزه های تخصصی:
The military and political leadership of Ukraine considers the domestic military-industrial complex as an important component of the country's national security and defense strategy and pays special attention to increasing the efficiency of production and scientific and technical activities of defense industry enterprises and organizations. The study represents directions for improving the state regulation for the further development of the military-industrial complex in Ukraine under the conditions of the transition to modern information technologies. Proposals have been made for the formation of the organizational and economic mechanism for state regulation development of the military-industrial complex, aimed at ensuring its innovativeness, stimulating scientific and technical activity, and implementing modern information technologies systematically during the production of weapons, ammunition and military goods.
نقش تفکر انتقادی در فرایند مدیریت دانش(مقاله علمی وزارت علوم)
حوزه های تخصصی:
مدیریت دانش[1] و تفکر انتقادی[2] دو پدیده گسترده و مهم برای سازمان ها و جامعه معاصر هستند و به خوبی مفاهیم مرتبط با آنها در ادبیات نظری علم مدیریت دانش و تفکر انتقادی بحث شده است. بااین حال، پیوندهای مفهومی موجود بین مدیریت دانش و تفکر انتقادی کمتر مورد تجزیه وتحلیل قرار گرفته و نقش تفکر انتقادی در فرایند مدیریت دانش به خوبی تبیین نشده است. هدف از این نوشتار، پر کردن این شکاف نظری و ارائه ارتباطات مفهومی بین مدیریت دانش و تفکر انتقادی است. تجزیه وتحلیل مفاهیم تفکر انتقادی و مدیریت دانش امکان شناسایی پیوندها را در سه بعد فراهم می کند.
Informational and Analytical Systems for Forecasting the Indicators of Financial Security of the Banking System of Ukraine(مقاله علمی وزارت علوم)
حوزه های تخصصی:
The article is devoted to the modern development of high technologies and computer technology greatly enhanced the development of automated banking systems of banking sector organizations and allowed the synthesis of information and communication technologies for their formation. The main purpose of the article is to select the main indicators for assessing the level of financial security of the banking system of the state and identify promising areas of its development using forecasting models. In the process of research such analytical functions have been used: polynomial, exponential, power and logarithmic. The authors believe that the information and analytical provision of the financial security of the bank is an information provision that combines, on the one hand, information work, that is, ways, means and methods of collecting the necessary information, and on the other - analytical work, which includes forms and methods of information analysis and processing, which ensures an objective assessment of the situation and the adoption of a balanced management decision. As a result, forecast models were built for each of the indicators and also, it has been found that most indicators of the banking system of Ukraine in 2021-2023 will remain at “unsatisfactory” and “critical” levels. In conclusions it was proposed to introduce measures that would be aimed at improving the reliability and stability of the banking system of Ukraine.
Prediction Financial Distress: The Pro-Technology Technique of Altman Z-Score Model(مقاله علمی وزارت علوم)
حوزه های تخصصی:
The Covid-19 outbreak has had a severe effect on the world economy. The company's business operations and profitability are damaged during the covid 19 outbreak. This deterioration is not only threatening the company’s survival position but also destroy the investor’s investment return. Therefore, it is vital to establish an effective early prediction technical method to foresee a corporate distress by a Pro-technical measurement to enhance the corporate sustainability. This study applies Altman Z-Score Model to as a Pro-Technology technique to the financial distress prediction of Malaysia’s Government Linked Plantation Companies (GLC-P) over a period of 10 years starting from 2012 to 2021. The significant contribution of the study is that the Z-Score Model provides an advanced indication tool regarding the financial stability of the respective GLC-P companies. The findings indicate that Financial Distress Prediction was dependent via in-time application of leverage, liquidity, activity, and profitability to the Altman Z-Score Model. Profitability and leverage were found to be superior prediction tool to financial distress.