شناسایی خودکار شناورهای سطحی در سونار غیرفعال با استفاده از فناوری های نوظهور هوش مصنوعی و یادگیری عمیق (مقاله علمی وزارت علوم)
درجه علمی: نشریه علمی (وزارت علوم)
آرشیو
چکیده
هدف: سیستم های هوشمند شناسایی خودکار اهداف زیرآبی، به طور فزاینده ای در سونار غیرفعال استفاده می شوند تا دخالت انسانی و چالش های مربوط به آن را در شناسایی دقیق شناورها کاهش دهند. امروزه روش های بسیار پیشرفته یادگیری عمیق به منظور شناسایی خودکار اهداف صوتی، توسط نیروهای دریایی جهان در حال بهره برداری می باشند.روش شناسی: در این مقاله روشی جدید در زمینه شناسایی خودکار اهداف صوتی زیر آب مبتنی بر الگوریتم های یادگیری عمیق ارائه شده است. در این روش ابتدا سیگنال های صوتی خام از هایدروفونها دریافت شده و پس از انجام پیش پردازش های لازم، با استفاده از تبدیل فرکانسی زمان_کوتاه، تصاویر طیف نگار مربوط به داده های صوتی سونار غیرفعال تولید شده و به لایه های پنهان مدل برای اعتبارسنجی و طبقه بندی ، تغذیه می شود.یافته ها: نتایج بدست آمده نشان می دهد این مدل می تواند به طور خودکار چندین ویژگی را که برای دسته بندی کلاس های مختلف کشتی مورد نیاز است را استخراج نمایند و با جستجوی آموزنده ترین ویژگی از داده های سوناری، موجب افزایش دقت شناسایی و کاهش خطای ارزیابی گردند.نتیجه: دقت شناسایی مدل پیشنهادی بیش از 97% و خطای ارزیابی آن کمتر از 3% می باشد. در این روش با بهبود نسبی دقت طبقه بندی، سرعت شناسایی اهداف بطور قابل ملاحظه ای افزایش یافته است.Automatic target recognition of surface vessels in passive sonar using emerging technologies of artificial intelligence and deep learning
Objective: Artificial intelligence is a part of computer science that emphasizes the creation of intelligent machines in defense equipment and military equipment. Intelligent systems for automatic underwater target recognition are increasingly used in passive sonar to reduce human intervention and related challenges in accurately identifying vessels. Today, highly advanced methods of machine learning and deep learning are being used by the world's navies to identify acoustic targets.Methodology: In this article, recent works in the field of automatic underwater acoustic target recognition are reviewed, and a new method based on deep learning algorithms is presented. In this method, first, the raw audio signals are received from the hydrophones, and after performing the necessary pre-processing, using the Short-time Fourier transform, the spectrogram images related to the passive sonar acoustic data are generated and fed to the model layers for model validation and classification.Results: The obtained results show that the multi-layer structures of the proposed model can automatically extract several features are required for the classification of different ship classes. In this article, common deep learning algorithms are used to identify targets, which can increase identification accuracy and reduce evaluation errors by searching for the most informative features of sonar data.Conclusion: The obtained results show that the recognition accuracy of the proposed model is more than 97%, and its validation loss is less than 3%. In this method, with the relative improvement of classification accuracy, the speed of target recognition has increased significantly.