شناسایی خودکار شناورهای سطحی در سونار غیرفعال با استفاده از فناوری های نوظهور هوش مصنوعی و یادگیری عمیق(مقاله علمی وزارت علوم)
منبع:
آینده پژوهی دفاعی سال ۸ پاییز ۱۴۰۲ شماره ۳۰
149-182
حوزه های تخصصی:
هدف: سیستم های هوشمند شناسایی خودکار اهداف زیرآبی، به طور فزاینده ای در سونار غیرفعال استفاده می شوند تا دخالت انسانی و چالش های مربوط به آن را در شناسایی دقیق شناورها کاهش دهند. امروزه روش های بسیار پیشرفته یادگیری عمیق به منظور شناسایی خودکار اهداف صوتی، توسط نیروهای دریایی جهان در حال بهره برداری می باشند.روش شناسی: در این مقاله روشی جدید در زمینه شناسایی خودکار اهداف صوتی زیر آب مبتنی بر الگوریتم های یادگیری عمیق ارائه شده است. در این روش ابتدا سیگنال های صوتی خام از هایدروفونها دریافت شده و پس از انجام پیش پردازش های لازم، با استفاده از تبدیل فرکانسی زمان_کوتاه، تصاویر طیف نگار مربوط به داده های صوتی سونار غیرفعال تولید شده و به لایه های پنهان مدل برای اعتبارسنجی و طبقه بندی ، تغذیه می شود.یافته ها: نتایج بدست آمده نشان می دهد این مدل می تواند به طور خودکار چندین ویژگی را که برای دسته بندی کلاس های مختلف کشتی مورد نیاز است را استخراج نمایند و با جستجوی آموزنده ترین ویژگی از داده های سوناری، موجب افزایش دقت شناسایی و کاهش خطای ارزیابی گردند.نتیجه: دقت شناسایی مدل پیشنهادی بیش از 97% و خطای ارزیابی آن کمتر از 3% می باشد. در این روش با بهبود نسبی دقت طبقه بندی، سرعت شناسایی اهداف بطور قابل ملاحظه ای افزایش یافته است.