امروزه در برخی محیط های تولیدی یا خدماتی، کیفیت محصول یا عملکرد فرآیند به وسیله ترکیبی از مشخصه های کیفی متغیر و وصفی همبسته توصیف می گردد. بر اساس آخرین اطلاعات مؤلفان، تا کنون هیچ روشی برای پایش ماتریس واریانس- کوواریانس این گونه فرآیندها ارائه نشده است. در این مقاله، یک شبکه عصبی مصنوعی برای پایش تغییرپذیری یک فرآیند چند مشخصه وصفی و متغیر ارائه شده است. شبکه ارائه شده نه تنها قادر به کشف وضعیت های خارج از کنترل بوده، بلکه می تواند مشخصه /مشخصه های عامل انحراف در فرآیند را نیز شناسایی کند. کارایی روش ارائه شده با استفاده از یک مثال عددی بر اساس معیارهای متوسط طول دنباله و درصد تشخیص درست مشخصه /مشخصه های کیفی عامل انحراف بررسی شده است. همچنین عملکرد شبکه طراحی شده در پایش ماتریس واریانس- کوواریانس فرآیندهای چند مشخصه وصفی و متغیر با دو روش آماری پایش ماتریس واریانس- کوواریانس برای مشخصه های کیفی متغیر که در این مقاله برای پایش فرآیندهای چند متغیره- چند مشخصه توسعه داده شده اند، مقایسه شده است. نتایج مثال عددی نشان می دهد که شبکه عصبی طراحی شده عملکرد بهتری در کشف وضعیت های مختلف خارج از کنترل نسبت به روش های آماری توسعه داده شده دارد و همچنین به خوبی قادر به تشخیص مشخصه(های) کیفی عامل انحراف در فرآیند است.