یک سیستم رودخانهای یک سیستم بازاست که از درگیر شدن ارتباطات مختلف و پیچیده شکل می گیرد. خصوصیات ذاتی حوضه ها از یک سو و عوامل خارجی از سوی دیگر رفتارهای رودخانه را متاثر می سازد.وجود ارتباطات متقابل متعدد از جمله ارتباطات جریان ورسوب حمل شده وتاثیر عوامل ژئومورفولوژی حوضه و مدل سازی آن از اهمیت ویژه ای برخوردار است.در این مطالعه دونوع شبکه عصبی مصنوعی ژئومورفولوژیکی و غیر ژئومورفولوژیکی برای پیش بینی بار رسوب جریان رودخانه سمندگان طراحی گردید و نتایج آن با دو نوع مدل رگرسیونی ژئومورفولوژیکی و غیر ژئومورفولوژیکی مورد مقایسه قرار گرفت. نتایج طراحی شبکه های عصبی مبین کارآیی خوب شبکه های چند لایه ی پرسپترون با الگوریتم یادگیری پس انتشار خطا است. نتایج نشان داد که شبکه عصبی ژئومورفولوژیکی با ضریب تبیین 862/0 و مجذور میانگین مربعات خطای 815/1 در مقایسه شبکه عصبی غیر ژئومورفولوژیکی با ضریب تبیین 827/0و معیار خطای031/2 میزان رسوب جریان را بهتر پیشبینی می کند. نتایج ارزیابی مدل های رگرسیونی مبین عملکرد ضعیفتر آن ها در مقایسه با روش شبکه عصبی مصنوعی است به طوری که ضریب تبیین مدل رگرسیونی ساده غیر ژئومورفولوژیکی 759/0و معیار خطای 395/2 و ضریب تبیین مدل رگرسیونی ژئومورفولوژیکی برابر 811/0 با معیار خطای معادل 142/2 است. همچنین از مقایسه نتایج مدل های مختلف چنین استنباط می شود زمانی که پارامترهای ژئومورفولوژیکی نظیر شاخص ناهمواری، شاخص گردی و شاخص تراکم زهکشی در مدل سازی وارد شوند نتایج ارزیابی آن ها مناسبتر می شود.