آرشیو

آرشیو شماره ها:
۶۱

چکیده

در این­ پژوهش، از شبکه­های عصبی مصنوعی ( Artificial Neural Networks ) به عنوان ابزاری توانمند در مدل سازی فرآیندهای غیرخطی و نامعین، به منظور پیش­بینی سیکل خشکسالی در20 ایستگاه سینوپتیک، کلیماتولوژی و هیدرومتری استان اصفهان که حداقل20 سال آمار روزانه داشتند، استفاده شد. از نرم­افزار MATLAB-7 و در شاخه Neural Network ، برای پیش­بینی وتجزیه و تحلیل عناصراقلیمی کمک گرفته شد. ورودی مدل­های ANN ، داده­های میانگین­ماهانه بارش، دبی حداقل و دمای­بیشینه است که این داده­ها، بازه زمانی سال­های1360 تا1383 را در بر می­گیرند. اطلاعات20 ساله برای آموزش مدل ­ ها و 4 سال باقی مانده برای آزمایش آن­ها به کاررفته است. شبکه مورد استفاده از نوع پرسپترون چندلایه ( Multi - layer P erceptron ) با الگوریتم پس­انتشارِخطا ( Back Propagation ) و تکنیک یادگیری مارکوارت- لونبرگ ( Train LM: Levenberg-Marquardt ) است. ساختارهای گوناگونی از شبکه عصبی با تغییر در لایه­های ورودی (6 مدل)، تعداد گره­ها در لایه­های پنهان و خروجی (2 الی20 گره) ایجاد گردید. نتایج حاصل از تحقیق حاضر، نشان می­دهد که در ­ میان الگوهای مورد بررسی، دمای­بیشینه، دبی و بارش، نقش مثبتی در پیش­بینی خشکسالی­های استان اصفهان داشته، با کاربرد شبکه عصبی مصنوعی می­توان با دقت بالای 95 درصد، سیکل خشکسالی استان را پیش­بینی نمود.

تبلیغات