مطالب مرتبط با کلیدواژه

یادگیری عمیق


۲۱.

طراحی راهبرد نگهداشت مشتری با استفاده از الگوی پیش بینی رویگردانی مشتری مبتنی بر یادگیری عمیق(مقاله علمی وزارت علوم)

تعداد بازدید : ۲۶۱ تعداد دانلود : ۲۵۶
نگهداری و حفظ روابط با مشتریان و جلوگیری از رویگردانی مشتری از وظایف مهم سازمان ها در بازارهای به شدت رقابتی کنونی است. در این پژوهش مسئله رویگردانی مشتری و استراتژی های حفظ و نگهداشت مشتری بررسی شده اند. این موضوعات از راه مرور ادبیات نظام مند و از زوایای مختلف از جمله زمینه فعالیت سازمان، درجه فردی سازی مدیریت ارتباط با مشتری، دسته بندی مشتریان، انتخاب مشتریان کلیدی، تعلق خاطر کارمندان به سازمان و ارزیابی عملکرد کارکنان سازمان بررسی قرار شده اند. علاوه بر این، ابزاری مبتنی بر شبکه های یادگیری عمیق جهت پیش بینی رویگردانی مشتری استفاده شده است. در نتیجه یک چارچوب و مدل مفهومی بر پایه ادبیات موجود در این حوزه ایجاد شده و بعد از آن با مدل پیش بینی رویگردانی مشتری با استفاده از شبکه های یادگیری عمیق ترکیب شده است. نتایج نشان می دهد استفاده از یادگیری عمیق در پیش بینی رویگردانی مشتری یک شیوه کاملاً مؤثر و کارآمد برای حل مسئله ارتباط، حفظ و نگهداشت مشتری است. این رویکرد نه تنها قادر به پیش بینی دقیق این است که کدام یک از مشتریان سازمان در حال رویگردانی از سازمان و قطع ارتباط خود با سازمان هستند، بلکه می تواند به طور دقیق عوامل و پارامترهای مؤثر بر رویگردانی مشتری را شناسایی کند و بینش بسیار ارزشمندی برای واحد بازاریابی سازمان ها به ارمغان آورد.
۲۲.

کاربرد معماری های یادگیری عمیق در پیش بینی قیمت سهام (رویکرد شبکه عصبی پیچشی CNN)(مقاله علمی وزارت علوم)

تعداد بازدید : ۳۳۸ تعداد دانلود : ۲۰۵
اهداف: الگوریتم های مبتنی بر شبکه عصبی پیچشی (CNN) که شاخه ای از مبحث یادگیری عمیق است، در سال های اخیر پیشرفت چشمگیری در حوزه های تحلیل فیلم و تصویر داشته اند؛ موفقیت و پذیرفته شدن الگوهای نوین این حوزه باعث به کارگیری گسترده آنها در زمینه های مختلف اعم از تحلیل متن و داده های سری زمانی شده است. یادگیری عمیق بخشی از الگوریتم های یادگیری ماشینی است که در آن از چندین لایه پردازش اطلاعات به ویژه اطلاعات غیرخطی استفاده می شود تا از ورودی خام، بهترین ویژگی های مناسب با هدف تحلیل، بازشناخت الگو یا پیش بینی استخراج شود. روش: در پژوهش حاضر توانایی معماری های مختلف الگوریتم CNN برای پیش بینی قیمت سهام بررسی شده است. نتایج: نتایج حاصل از اجرای الگوریتم به تعداد 54 دفعه با معماری ها و پارامترهای متفاوت و با استفاده از دو دسته اصلی داده های ورودی شامل اطلاعات قیمتی روزانه سهام و ده شاخص منتخب تکنیکال برای سهام شرکت ذوب آهن اصفهان نشان دهنده آن است که استفاده از CNN همراه با لایه ادغام بیشینه (ترکیب پارامترهای اندازه دسته 64، تعداد فیلتر 256 و با تابع فعال سازی ReLU)، دارای خطاهای درصد 79/1 = MAPE و درصد 71/2 =  NRMSE است که نشان دهنده عملکرد بهتر آن نسبت به سایر معماری ها و الگوریتم RNN است.
۲۳.

معرفی و آزمون پیکرۀ علیت PerCause برای شناسایی روابط علّی فارسی(مقاله علمی وزارت علوم)

تعداد بازدید : ۱۵۵ تعداد دانلود : ۱۳۲
شناسایی روابط علّی و همچنین تعیین مرز عناصر علّی در متن، از جمله مسائل چالش برانگیز در پردازش زبان طبیعی (NLP < /span>) به ویژه در زبان های کم منبع مانند فارسی است. در این پژوهش، در راستای آموزش سیستمی برای شناسایی روابط علّی و مرز عناصر آن، یک پیکره علّیت برچسب خورده انسانی برای زبان فارسی معرفی می شود. این مجموعه شامل 4446 جمله (مستخرج از پیکره بیجن خان و متن یکسری کتاب) و 5128 رابطه علّی است و در صورت وجود، سه برچسب علت، معلول و نشانه علّی برای هر رابطه مشخص شده است. ما از این پیکره برای آموزش سیستمی برای تشخیص مرزهای عناصر علّی استفاده کردیم. همچنین، یک بستر آزمون شناسایی علّیت را با سه روش یادگیری ماشین و دو سیستم یادگیری عمیق مبتنی بر این پیکره ارائه می کنیم. ارزیابی های عملکرد نشان می دهد که بهترین نتیجه کلی از طریق طبقه بندی کننده CRF به دست می آید که معیار F برابر 76% را ارائه می کند. علاوه بر این، بهترین صحت (91.4٪) در روش یادگیری عمیق BiLSTM-CRF به دست آمده است. به نظر می رسد وجود CRF به دلیل مدلسازی بافتار منجر به بهبود دقت سیستم می شود.
۲۴.

مرزبندی فیبروز میوکارد در تصاویر ام آرآی کسب شده با ماده حاجب بیماران کاردیومیوپاتی هیپرتروفیک با یادگیری عمیق(مقاله پژوهشی وزارت بهداشت)

تعداد بازدید : ۱۶۰ تعداد دانلود : ۱۵۰
مقدمه: مرزبندی دقیق نواحی مبتلابه فیبروز میوکارد در تصاویر ام آرآی کسب شده با ماده حاجب نقش بسیار مهمی در پایش بیماران کاردیومیوپاتیک هیپرتروفیک و ارزیابی ریسک ابتلای آن ها به عوارض ناشی از این بیماری همچون مرگ ناگهانی دارد. به دلیل صرف زمان بسیار و نیاز به تخصص برای انجام این عمل، خودکار کردن این فرایند می تواند نقش بسزایی در تسریع و افزایش کارایی آن بگذارد. هدف از مطالعه انجام شده، استفاده از یک مدل مبتنی بر یادگیری عمیق برای خودکار کردن فرایند مرزبندی فیبروز میوکارد در تصاویر ام آرآی کسب شده با ماده حاجب بیماران در کاردیومیوپاتیک هیپرتروفیک بود. روش ها: در این پژوهش از پشت سر هم قرار گرفتن سه مدل مشابه برگرفته از شبکه ی یونت، به ترتیب برای تشخیص ناحیه هدف، رسم مرزهای میوکارد و مرزبندی دقیق نواحی مبتلابه فیبروز استفاده شده است. برای انجام این پژوهش، از تصاویر ام آرآی کسب شده با ماده حاجب ۴۱ بیمار مبتلابه کاردیومیوپاتی استفاده شد که توسط دو متخصص با سابقه مرزبندی شده بودند. یافته ها: مدل استفاده شده توانست ضریب تشابه دایس و صحت به ترتیب ۷۴/۸۹ و ۲۲/۹۸ در مرزبندی فیبروز؛ و ۴۲/۸۸ و ۶۶/۹۴ در مرزبندی ماهیچه بطن چپ دست یابد و در مقایسه با روش های قبلی کارایی بالاتری ارائه دهد. نتیجه گیری: نتایج به دست آمده از این مطالعه نشان دادند که استفاده از روش های یادگیری عمیق در روند رسم مرزهای فیبروز میوکارد، علاوه بر خودکارسازی این فرایند، حذف نیاز به تخصص و همچنین کاهش زمان، می توانند کارایی این عمل را نسبت به روش-های ارائه شده پیشین افزایش دهند.
۲۵.

یک مدل شبکه عصبی پیچشی برای پیش بینی مسیر حرکت طوفان های گرد و غبار(مقاله علمی وزارت علوم)

کلیدواژه‌ها: فرآیند حرکتی پیش بینی حرکت یادگیری عمیق طوفان های گردوغبار MERRA - 2

حوزه‌های تخصصی:
تعداد بازدید : ۲۶۰ تعداد دانلود : ۲۳۲
طوفان های گردوغبار بلایایی طبیعی اند که در زندگی انسان و محیط زیست تأثیر چشمگیری گذاشته اند. توسعه مدل هایی، به منظور پیش بینی مسیر حرکت این طوفان ها، در پیشگیری و مدیریت طوفان های گردوغبار نقش بسزایی ایفا می کند زیرا مسیر انتقال آنها را آشکار و مناطق آسیب پذیر بعدی در برابر طوفان را مشخص می کنند. به لطف امکانات روش های یادگیری عمیق در حل مسائل مبتنی بر سری زمانی و یافتن الگوهای پنهان از حجم داده کلان، در این پژوهش، یک مدل ترکیبی شبکه عصبی پیچشی (CNN) به منظور پیش بینی مسیر حرکت طوفان گردوغبار، براساس داده عمق نوری هواویز (AOD) محصول MERRA-2 برای دوازده ساعت آینده، توسعه داده شده است. همچنین چهل رویداد طوفان، شامل 2489 ساعت طوفان در منطقه ای خشک در مرکز و جنوب آسیا، به منظور آموزش مدل به کار رفته است. نتایج نشان می دهد که مدل پیشنهادی پیش بینی دقیقی از مسیر حرکت طوفان به دست می دهد؛ به گونه ای که درمورد گام های زمانی 3، 6، 9 و 12 ساعت آینده، مقادیر دقت کلی به ترتیب برابر با 9806/0، 9810/0، 9813/0 و 9790/0، مقادیر امتیاز F1 به ترتیب برابر با 8490/0، 8524/0، 8530/0 و 8384/0 و مقادیر ضریب کاپا به ترتیب برابر با 8387/0، 8424/0، 8431/0 و 8273/0 است.
۲۶.

قدرت شبکه عصبی پیچشی در پیش بینی درماندگی مالی(مقاله علمی وزارت علوم)

کلیدواژه‌ها: درماندگی مالی پیش‎بینی شبکه عصبی پیچشی یادگیری عمیق

حوزه‌های تخصصی:
تعداد بازدید : ۲۰۸ تعداد دانلود : ۲۰۲
در این پژوهش ضمن نگاه بر سیر تکامل ادبیات پیش بینی درماندگی مالی، به ارائه یک مدل یادگیری عمیق پرداخته شده است. در این روش به شکلی مراحلی که روش های پیشین برای پیش بینی درماندگی طی کرده اند،  کوتاه تر و خودکارتر شده است. در نهایت، به مقایسه دقت پیش بینی مدل توسعه داده شده با مدل های پیشین در این حوزه پرداخته شده است. در این پژوهش یک شبکه عصبی پیچشی به عنوان یک مدل یادگیری عمیق که داده های 14 متغیر مرتبط با پیش بینی درماندگی مالی را در طول 3 سال متوالی واکاوی می کند، برای پیش بینی درماندگی مالی مورداستفاده قرار گرفته است.بدر این راستا، به منظور جلوگیری از خطاهای احتمالی تعمیم پذیری، از روش K-fold برای نمونه گیری فرعی استفاده شده است که داده های 300 نمونه را مورد بررسی قرار می دهد. در نهایت، با استفاده از آزمون ناپارامتریک Wilcoxon به بررسی معنی دار بودن اختلاف دقت پیش بینی ارائه شده میان مدل توسعه داده شده و مدل های پیشین پرداخته شده است. نتایج این پژوهش نشان می دهد مدل شبکه عصبی پیچشی به شکل معنی داری در سطح اطمینان 95 درصد مدل های پیش بینی درماندگی سابق از جمله رگرسیون لجستیک و ماشین بردار پشتیبان را در دقت پیش بینی شکست می دهد.
۲۷.

بهبود عملکرد سیستم های توصیه گر پالایش مشارکتی با استخراج عمیق ویژگی ها

کلیدواژه‌ها: سیستم توصیه گر مهندسی ویژگی ها یادگیری عمیق فیلترینگ مشارکتی

حوزه‌های تخصصی:
تعداد بازدید : ۱۴۹ تعداد دانلود : ۱۰۲
حجم فراوان و روبه رشد اطلاعات بر روی وب و اینترنت، فرایند تصمیم گیری و انتخاب اطلاعات، داده یا کالاهای مورد نیاز را برای بسیاری از کاربران وب دشوار کرده است. سیستم های توصیه گر با تحلیل رفتار کاربر خود، اقدام به پیشنهاد مناسب ترین اقلام داده، اطلاعات یا کالا می نمایند. در این پژوهش، با بهره گیری از تکنیک های یادگیری عمیق، روشی برای بهبود عملکرد سیستم های توصیه گر پالایش مشارکتی ارایه شده است. هدف، استفاده از استخراج عمیق ویژگی ها در جهت ارائه پیشنهادهای موثرتر و مطلوب تر به کاربر سیستم مورد نظر است. در بخش پیش پردازش، ابتدا داده های ورودی در سیستم پردازش اولیه قرار وارد می شوند و مقادیر ویژ گی ها نرمال سازی می شوند. سپس، برای اینکه محاسبات دقیق تر انجام گیرد و زمان محاسبات نیز کاهش یابد، با استفاده از یک شبکه باور عمیق (DBN)، ضمن استخراج عمیق ویژگی ها، ابعاد داده ها کاهش می یابد. سپس، با استفاده از تکنیک پالایش مشارکتی، اقلام پیشنهادی به کاربر ارائه می شوند. در پایان، با توجه به خروجی های سیستم در توصیه به کاربر، ارزیابی صحت اقلام پیشنهادی صورت می گیرد. جهت ارزیابی روش پیشنهادی از مقایسه عملکرد آن برروی مجموعه داده دنیای واقعی MovieLens با روش های پایه استفاده شده است. نتایج تجربی نشان داد روش پیشنهادی از نظر پوشش و حمایت نسبت به سایر روشهای مورد مقایسه، عملکرد بهتری دارد.
۲۸.

قیمت گذاری املاک مسکونی به کمک الگوریتم ترکیبی یادگیری عمیق- فازی(مقاله علمی وزارت علوم)

کلیدواژه‌ها: قیمت گذاری املاک مسکونی یادگیری عمیق شبکه های عصبی عمیق فازی TabNet

حوزه‌های تخصصی:
تعداد بازدید : ۱۹۷ تعداد دانلود : ۱۲۸
اهمیت روزافزون مسکن به لحاظ تأثیرات عمیق و قابل توجهی که بر ابعاد مختلف اجتماعی، سیاسی و اقتصادی کشورها می گذارد، بر کسی پوشیده نیست؛ بنابراین برآورد دقیق و قابل اعتماد قیمت به طورقطع امر سیاست گذاری در این زمینه را آسان می نماید. در شرایط مختلف ممکن است صدها عامل به صورت زیرمجموعه ای از عوامل ساختاری، مکانی و اجتماعی – اقتصادی بر قیمت املاک تأثیر بگذارد. بنابراین بایستی با در نظر گرفتن این عوامل، قیمت گذاری املاک به طور کارآمد انجام شود. با توجه به ماهیت پیچیده ی بازار املاک در تحقیقات انجام شده از الگوریتم های متداول یادگیری عمیق مانند DNN ، RNN،  CNNو ... استفاده شده است، اما این الگوریتم ها در خصوص داده های جدولی چندان مناسب نمی باشند. از طرفی مدل های یادگیری عمیق موجود در قیمت گذاری ملک نیز کاملاً قطعی هستند و عدم قطعیت داده ها را لحاظ نمی کنند. در این مقاله سعی شده است که در به کارگیری روش های یادگیری عمیق به ساختار جدولی داده های املاک توجه شود. برای این منظور معماری عمیق جدید TabNet به کار گرفته شده است. این الگوریتم برخلاف سایر الگوریتم های متداول یادگیری عمیق داده های جدولی خام را بدون هیچ گونه پیش پردازشی دریافت می کند. در این پژوهش هم چنین با استفاده از تکنیک های ترکیب موجود، منطق فازی با الگوریتم های یادگیری عمیق ترکیب شده است تا ضمن یادگیری سریع و دقیق تر مسائل پیچیده، بر کاستی های قطعی بودن مدل های یادگیری عمیق و در نظر نگرفتن عدم قطعیت ذاتی داده ها در این مدل ها غلبه شود. همچنین با به کارگیری سیستم اطلاعات مکانی (GIS) ارزیابی شفاف تری ارائه شد تا بصری سازی کامل الگوی مکانی ویژگی های ملک و همچنین ارتباط این ویژگی ها و قیمت گذاری تضمین  و متغیرهای مکانی نیز در مدل ارزش گذاری لحاظ شوند. به منظور ارزیابی روش های پیشنهادی از داده های املاک منطقه ی پنج تهران استفاده شده است. ترتیب و اولویت بندی تأثیرگذاری ویژگی ها در قیمت گذاری املاک مسکونی تهران توسط الگوریتم TabNet نشان دهنده ی تأثیر قابل توجه عوامل مکانی می باشد. به طوری که در این رتبه بندی  پس از مساحت دو ویژگی مکانی طول و عرض جغرافیایی به ترتیب رتبه ی دوم و سوم را دارا می باشند. درنهایت برای مجموعه داده ی تهران الگوریتم های TabNet، DNN،CNN ، RNN، LSTM، خود رمزگذار و همچنین الگوریتم یادگیری ماشین XGBoost به کار گرفته شده و معیارهای ارزیابیRMSE ،MAE  و  مقایسه شدند که بر اساس معیار، با به کارگیریTabNet   پنج درصد بهبود دقت حاصل شد. درنهایت RMSE الگوریتم ترکیبی FuzzyTabNet برای داده ی تهران نسبت به الگوریتم پایه ی TabNet  4.65% کاهش یافت. همچنین شبکه ی خود رمزگذار فازی نیز نسبت به شبکه ی خود رمزگذار معمولی 6.52 درصد بهبود یافت.
۲۹.

مسئولیت مدنی در حوادث ناشی از یادگیری عمیق هوش مصنوعی (مطالعۀ موردی: خودروهای تمام خودران)(مقاله علمی وزارت علوم)

نویسنده:

کلیدواژه‌ها: تولیدکننده مسئولیت مدنی هوش مصنوعی یادگیری عمیق

حوزه‌های تخصصی:
تعداد بازدید : ۲۵۲ تعداد دانلود : ۱۷۴
هوش مصنوعی می تواند فواید بی شماری برای بشریت داشته باشد که یکی از آن ها خودروهای تمام خودران هستند. این پژوهش به طور خاص و موردی به مسئولیت مدنی یادگیری عمیق هوش مصنوعی در خودروی تمام خودران می پردازد. آن گاه که هوش مصنوعی در خودروی تمام خودران مطابق با دستورهای ارائه شده توسط تولیدکننده یا توسعه دهندگان نرم افزار عمل نمی کند و هوش مصنوعی خارج از چارچوب دستورالعمل خود، مطابق با یادگیری عمیق (تقویتی)، عمل می کند چه کسی مسئول خواهد بود؟ چگونه می توان، با تکیه بر قواعد عام مسئولیت مدنی، هوش مصنوعی یا دست اندرکاران آن را مسئول دانست؟ پس از بررسی و تعمق و غور در قوانین، پی می بریم که افراد متعددی از جمله طراح نرم افزار، تولیدکننده خودروی خودران، و ناظر فنی ممکن است مسئول شناسایی شوند و نتایج این پژوهش نشان دهنده به روز نبودن و تقصیرمحور بودن نظام مسئولیت مدنی ایران در خصوص مسئولیت مدنی دست اندرکاران هوش مصنوعی است.
۳۰.

طراحی سیستم ارزیابی هوشمند جهت پیش بینی خسارت بیمه های آتش سوزی با استفاده از یادگیری عمیق(مقاله علمی وزارت علوم)

کلیدواژه‌ها: ارزیابی ریسک بیمه آتش سوزی پیش بینی خسارت نظریه ریسک یادگیری عمیق

حوزه‌های تخصصی:
تعداد بازدید : ۲۱۳ تعداد دانلود : ۱۷۸
پیشینه و اهداف: بیمه آتش سوزی نوعی بیمه است که از خسارت مالی به اموال محافظت می کند. معمولاً حوادثی مانند آتش سوزی، سرقت و خسارت های مربوط به آب وهوا را پوشش می دهد و می تواند به جبران هزینه های تعمیر یا جایگزینی اموال آسیب دیده کمک کند. شرکت های بیمه و علاقه مندان به توسعه خدمات بیمه آتش سوزی به دنبال استفاده از روش های تحلیلی مدرن برای تجزیه وتحلیل بیمه نامه ها، ارزیابی و پیش بینی خسارت احتمالی آن ها برای مدیریت ریسک هستند. پیش بینی ادعای خسارت، معیاری حیاتی برای پیش بینی خسارت های آتی در شرکت های بیمه است. براساس نظریه ریسک، پیش بینی خسارت عنصری مهم در کسب وکار بیمه آتش سوزی برای ارزیابی حداکثر خسارت احتمالی است. روش شناسی: در این پژوهش سه معیار پیش بینی خسارت (احتمال وقوع، شدت، زمان بروز) با تهیه مجموعه داده، یادگیری و مقایسه الگوریتم های مختلف توصیف می شوند. در ابتدا، تجزیه وتحلیل داده های اکتشافی برای انتخاب ویژگی های مورد نیاز انجام شد و در نهایت 44 قلم اطلاعاتی از اطلاعات بیمه نامه و خسارت پرداختی رشته آتش سوزی انتخاب گردید. ابعاد مجموعه داده ها توسط روش حذف بازگشتی ویژگی ها کاهش یافته و برای هر الگوریتم، مجموعه مختلفی از فیلدهای اطلاعاتی مؤثر انتخاب شده است. ما بیش از 780،000 رکورد بیمه نامه و حدود 70،000 رکورد مرتبط خسارت پرداختی را برای یک بازه ده ساله (ابتدای 1390 تا ابتدای 1400) از بانک اطلاعاتی عملیاتی سامانه آتش سوزی بیمه ایران انتخاب کرده ایم. مدل های یادگیری رگرسیونی برتر مانند رگرسیون خطی، رگرسیون جنگل تصادفی، رگرسیون بردار پشتیبان و شبکه عصبی عمیق برای هر سه الگوریتم پیش بینی خسارت پیاده سازی شد. سپس دقت الگوریتم ها با مقدار میانگین مربعات خطا و مقدار میانگین خطای مطلق مقایسه شد. یافته ها : نتایج پیش بینی مدل نشان داد که بهترین الگوریتم برای هر سه معیار، یادگیری عمیق و مشخصاً شبکه عصبی چندلایه پرسپترون است. پس از تنظیم فراپارامترها و چندین بار اجرا، بهترین الگوریتم یادگیری عمیق با کمترین خطا با مقادیر 0.117 (احتمال وقوع)، 0.042 (شدت خسارت)، 0.106 (زمان بروز خسارت) حاصل شد. پیش بینی نتایج مدل نوآورانه ما در داده های آزمایشی، به این نتیجه رسید که مدل هوشمند ارائه شده دقت مناسبی دارد. شرکت های بیمه به شدت علاقه مند پیش بینی آینده اند و پیش بینی خسارت فرصتی برای کاهش زیان مالی برای شرکت فراهم می کند. به کارگیری یادگیری عمیق در پیش بینی خسارت آتش سوزی و پیش بینی زمان بروز خسارت، علاوه بر احتمال و شدت، نوآوری های مدل هستند. نتیجه گیری: یادگیری ماشین می توانند به شرکت ها کمک کنند تا خدمات خود را با دقت بیشتری بهینه کنند، مدیریت ریسک را تقویت و در نتیجه ابزارهایی برای تصمیم گیری بهتر فراهم نمایند. به کارگیری یادگیری عمیق در پیش بینی خسارت بیمه می تواند به صورت کاربردی جایگزین فرایند دستی پیچیده، زمان بر و نادقیق موجود در شرکت های بیمه شود و سرآغار توسعه نوین در مدیریت ریسک، مدیریت اتکایی و بهبود نرخ گذاری بیمه آتش سوزی باشد.
۳۱.

پیش بینی ارزش شرکت مبتنی بر روش های یادگیری عمیق(مقاله علمی وزارت علوم)

کلیدواژه‌ها: ارزش شرکت نسبت مالی حاکمیت شرکتی ‏اقتصاد کلان بازار سهام یادگیری عمیق

حوزه‌های تخصصی:
تعداد بازدید : ۲۰۶ تعداد دانلود : ۲۴۹
پیش بینی و درک روشن از رفتار یک پدیده نقش عمده ای در اتخاذ راهبردها و تصمیم گیری ها دارد. توسعه همه جانبه و تعمیق بازار سرمایه به عنوان موتور محرکه توسعه اقتصادی، نیازمند اعتماد عمومی مشارکت کنندگان به کارایی و درستی آن در تعیین قیمت عادلانه اوراق بهادار است. از سوی دیگر، پیش بینی ارزش شرکت، نوسانات قیمت یا بازدهی سهام اهمیت زیادی در انتخاب پرتفوی، مدیریت دارایی ها و حتی قیمت گذاری سهام شرکت هایی که تازه وارد بورس می شوند، دارد. در این پژوهش با استفاده از داده های 159 شرکت طی دوره زمانی 10 ساله شامل 1399-1390 و عوامل موثر بر ارزش شرکت شامل نسبت های مالی، سازوکارهای راهبری شرکتی، عوامل اقتصاد کلان و بازار سهام اقدام به پیش بینی ارزش شرکت شده است. در این پژوهش از دو ساختار روش یادگیری عمیق شامل GRU و BLSTM جهت ارزیابی بهتر استفاده می شود. نتایج حاصل از بررسی داده های گردآوری شده با استفاده از تکنیک های یادگیری عمیق، بیانگر آن بود که مدل ترکیبی با مقدار خطای RMSE کمتری نسبت به مدل GRU ارزش شرکت را پیش بینی کرده است
۳۲.

تشخیص اجتماع در شبکه های اجتماعی با رویکرد یادگیری عمیق(مقاله علمی وزارت علوم)

کلیدواژه‌ها: تشخیص اجتماع یادگیری عمیق خودرمز گذار شبکه های پیچیده

حوزه‌های تخصصی:
تعداد بازدید : ۲۱۹ تعداد دانلود : ۱۵۹
تشخیص اجتماع یک موضوع مهم در تحلیل شبکه های اجتماعی می باشد و برای درک ساختار شبکه های پیچیده ضروری است. در تشخیص اجتماع هدف، شناسایی گروه هایی است که گره های گروه به طور متراکم با هم در ارتباط هستند. در این تحقیق، ضمن ارائه معماری جامع و یکپارچه ای از روش های تشخیص اجتماع با یادگیری عمیق، از تکنیک های یادگیری عمیق برای کنترل داده های گراف با ابعاد بالا استفاده شده است. روش های کلاسیک تشخیص اجتماع برای شبکه های با ابعاد پایین مناسب هستند. از این رو، کاهش ابعاد شبکه های پیچیده موضوع مهمی در تشخیص اجتماع به شمار می آید. در این تحقیق، ابتدا ماتریس شباهت جدیدی از توپولوژی شبکه برای آشکار کردن اتصالات مستقیم و غیر مستقیم بین گره ها ایجاد می شود. سپس یک خودمرزگذار پشته براساس یادگیری بدون نظارت برای کاهش ابعاد طراحی شده است. پس ازآن الگوریتم های مختلف خوشه بندی تست و برای تشحیص اجتماعات به کار برده می شوند. ارزیابی مدل پیشنهادی تحقیق، با انجام آزمایش های متعدد بر روی معیار استاندارد و شش مجموعه داده واقعی کاراته، دلفین ها، فوتبال، کتاب های سیاسی،کرا و شهروند مورد بررسی قرار می گیرد. نتایج ارزیابی روش پیشنهادی، در مجموعه داده فوتبال در مقایسه با دوازده الگوریتم مطرح به کار رفته در تحقیقات گذشته دقت بالاتری در شناسایی اجتماعات دارد و در سایر مجموعه داده ها در مقایسه با سیزده الگوریتم بهبود قابل توجهی را نشان می دهد.
۳۳.

مدلی برای تشخیص ادعاهای غیر عادی خسارت در بیمه کشاورزی با استفاده از یادگیری عمیق(مقاله علمی وزارت علوم)

کلیدواژه‌ها: تشخیص ناهنجاری بیمه کشاورزی یادگیری عمیق خودرمزگذار

حوزه‌های تخصصی:
تعداد بازدید : ۱۴۳ تعداد دانلود : ۱۳۸
موارد کلاهبرداری در سال های اخیر به ویژه در زمینه های مهم و حساس مالی و بیمه ای افزایش یافته است. از این رو، برای مقابله با این گونه کلاهبرداری ها نیاز به اقدامات متفاوتی نسبت به روش های بازرسی سنتی وجود دارد. بیمه کشاورزی نیز با توجه به ماهیت و گستردگی وسیع آن از این تهدید مستثنا نبوده و سالانه هزینه های زیادی صرف پرداخت به خسارت های ساختگی می شود. این پژوهش با هدف ارائه مدلی برای کشف ادعاهای خسارت غیرواقعی در بیمه کشاورزی با بکارگیری تکنیک های داده کاوی و یادگیری ماشین ارائه شد. برای ساخت مدل یادگیری عمیق مورد استفاده قرار گرفت. داده های مورد استفاده از صندوق بیمه کشاورزی اخذ شد و مربوط به بیمه نامه های گندم آبی و دیم استان خوزستان بود که در سال زراعی 1399-1398 برای آنها غرامت پرداخت شده بود. بعد از آماده سازی و پیش پردازش داده ها، با استفاده از یادگیری عمیق نسبت به کشف موارد غیرعادی اقدام و نتایج توسط کارشناسان صندوق بیمه کشاورزی مورد ارزیابی قرار گرفت. بعد از تحلیل نتایج مشخص شد یک درصد از خسارت های پرداختی مربوط به درخواست های غیرواقعی بوده و در پرداخت خسارت بایستی دقت و بررسی بیشتری انجام شود. دقت مدل در تشخیص موارد غیرعادی برای گندم آبی و دیم به ترتیب برابر با 53/53 و 63/37 درصد بدست آمد. در بررسی نتایج مشخص شد 5 دسته رفتار غیرعادی منجر به پرداخت خسارت غیرواقعی شده اند که رفتار عدم ارائه مستندات خسارت فراوانی بیشتری نسبت به بقیه داشت.
۳۴.

پیش بینی نقدشوندگی در بورس اوراق بهادار تهران با استفاده از مدل های یادگیری(مقاله علمی وزارت علوم)

کلیدواژه‌ها: بازار سهام پیش بینی معیارهای نقدشوندگی یادگیری عمیق

حوزه‌های تخصصی:
تعداد بازدید : ۱۷۸ تعداد دانلود : ۱۸۳
قابلیت نقدشوندگی در بورس، میزان نزدیکی سهام به پول نقد را بیان می کند. از آنجا که بورس اوراق بهادار تهران در ردیف بورس های غیرنقد جهان لحاظ شده و مسئله نقدشوندگی سهام یکی از دغدغه های اصلی سرمایه گذاران است، لذا در این پژوهش سعی بر این است با استفاده از مدل های یادگیری عمیق به پیش بینی نقد شوندگی بورس اوراق بهادار تهران پرداخته شود. جامعه آماری شامل شرکت های فعال در بورس اوراق بهادار تهران در سال های 1400-1394 می باشد که 23 شرکت به عنوان نمونه مورد مطالعه قرار گرفتند. حجم و ارزش معاملات، نسبت گردش سهام، آمیهود، اختلاف قیمت های پیشنهادی خرید و فروش و شکاف نسبی به عنوان معیارهای نقدشوندگی، اندازه گیری شده و یک شبکه عصبی تماما متصل بر اساس پرسپترون چند لایه (MLP)، مدل ترکیبی یادگیری عمیق (MDL) و مدل کلاسیک رگرسیون خطی (LR) مورد آزمون قرار گرفت. برای سنجش قدرت پیش بینی مدل ها، میانگین مربعات خطا (MSE) و میانگین قدر مطلق خطا (MAE) محاسبه شده و جهت مقایسه میزان دقت روش های مختلف پیش بینی، آزمون t مورد استفاده قرار گرفت. طبق نتایج، میزان خطای پیش بینی مدل ترکیبی یادگیری عمیق از دو مدل دیگر کمتر بوده و آزمون های آماری نیز در سطح اطمینان 95 درصد، معنی داری اختلاف دقت پیش بینی مدل ها را تایید می کند که عملکرد مناسب مدل ترکیبی پیشنهادی را در مقایسه با دو مدل دیگر نشان می دهد.
۳۵.

هوش مصنوعی، یادگیری ماشینی و یادگیری عمیق در با نک ها و موسسات مالی

نویسنده:

کلیدواژه‌ها: یادگیری عمیق یادگیری ماشین هوش مصنوعی

حوزه‌های تخصصی:
تعداد بازدید : ۱۴۶
هوش مصنوعی (AI)، یادگیری ماشین (ML)، و یادگیری عمیق (DL) تأثیر به سزایی روی بانکداری (فناوری مالی یا فین تک)، سلامت و بهداشت (فناوری سلامت)، قانون (فناوری مقررات گذاری)، و سایر بخش هایی مثل جمع آوری کمک های مالی برای خیریه (فناوری خیریه) دارند. سرعت نوآوری مرتبط با فناوری و توانایی سیستم های هوش مصنوعی برای فکر کردن درست شبیه به انسان ها (شبیه سازی هوش انسان)، انجام وظایف و کارها به صورت مستقل، توسعه و بسط هوش براساس تجارب خود، و پردازش لایه های اطلاعاتی برای یادگیری بازنمایی های همواره پیچیده از داده ها (ML/DL) به این معناست که ارتقا و پیشرفت در نرخ هایی که در آن ها این فناوری می تواند وظایف پیچیده، فنی، و زمان بر را انجام دهد، مردم، اشیاء، صداها، الگوها و غیره را شناسایی کند، مشکلات را زودتر بررسی کند، و راه حل ها را ارائه نماید، سودهای خیره کننده ای را در شرایط اقتصادی، سیاسی، و اجتماعی فراهم نماید. هدف از انجام این مقاله بررسی دقیق اختراعات و پیدایش های جدید در هوش مصنوعی، یادگیری ماشین، و یادگیری عمیق در بستر چالش تطبیق مقرراتی است که مؤسسات مالی در بریتانیا (UK) با آن مواجه می شوند.
۳۶.

پیش بینی و پایش میزان تُن کیلومتر و بارنامه حمل شده جاده ای کشور به منظور تشخیص رفتار غیر عادی(مقاله علمی وزارت علوم)

کلیدواژه‌ها: پیش بینی کنترل کیفیت آماری بارنامه جاده ای تُن کیلومتر یادگیری ماشین یادگیری عمیق پایش

حوزه‌های تخصصی:
تعداد بازدید : ۱۳۲ تعداد دانلود : ۹۲
جابه جایی کالا جزء ضروری و لاینفک فرآیند برنامه ریزی توسعه ملّی است؛ هدف پژوهش حاضر، پیش بینی و پایش میزان تُن کیلومتر و بارنامه حمل شده کشور به منظور تشخیص رفتار غیرعادی است. در این پژوهش برای گردآوری داده ها از مشاهده ماهانه به دست آمده طی 6 سال (1395 تا 1400) که توسط «سازمان راهداری و حمل ونقل جاده ای ایران» به تفکیک هر استان جمع آوری شده، استفاده شده است. در این پژوهش تُن کیلومتر با روش های مختلف تن-کیلومتر و بارنامه پیش بینی شده و نتیجه برای یافتن رفتار غیرعادی پس از افزایش نرخ بهره و مالیات کنترل می شود. برای پیاده سازی مدل، از 72 داده تُن کیلومتر حمل شده و 72 بارنامه صادرشده که از 32 استان طی شش سال حمل ونقل جاده ای جمع آوری شده است، استفاده شد. چهار روش مختلف پیش بینی، یعنی جنگل تصادفی، شبکه عصبی LSTM، ARIMA و ETS به تفصیل بررسی شدند. نتایج تجربی نشان می دهد که جنگل تصادفی از سایر مدل ها بهتر عمل می کند. در این پژوهش از ابزار کنترل کیفیت آماری امتیاز z برای تشخیص داده های پرت و رفتار غیرعادی استفاده شد. نتایج تجربی حاکی از آن است که از 32 استان، 3 استان دارای رفتار غیرعادی هستند که یکی از آن ها به دلیلی غیر از افزایش نرخ بهره و مالیات حمل ونقل جاده ای است.
۳۷.

بهینه سازی سبد سرمایه گذاری به کمک پیش بینی بازده مورد انتظار با استفاده از روش های شبکه عصبی LSTM، جنگل تصادفی و ARIMA(مقاله علمی وزارت علوم)

کلیدواژه‌ها: بهینه سازی پرتفولیو یادگیری ماشین یادگیری عمیق خطای پیش بینی سنجه ریسک مالی

حوزه‌های تخصصی:
تعداد بازدید : ۱۱۰ تعداد دانلود : ۱۱۳
در جهان امروز اهمیت مدل های بهینه سازی سبد سرمایه گذاری به صورت فزاینده ای مورد توجه قرار گرفته است. هرچند پیش بینی بازده مورد انتظار گزینه های سرمایه گذاری و در نظر گرفتن آن ها در تابع هدف بیشینه سازی سود امری رایج است لیکن مهم ترین نوآوری پژوهش جاری کمینه سازی خطای پیش بینی به عنوان تابع هدف است. این نوآوری به سرمایه گذاران توصیه می کند که در تشکیل سبد سرمایه گذاری علاوه بر سود و ریسک، بر معیار مهم قابل پیش بینی بودن گزینه های سرمایه گذاری نیز تاکید گردد. ادغام پیش بینی بازده مدل های سری زمانی سنتی در تشکیل پورتفولیو می تواند عملکرد مدل بهینه سازی سبد اصلی را بهبود بخشد. از آنجایی که مدل های یادگیری ماشین و یادگیری عمیق برتری قابل توجهی نسبت به مدل های سری زمانی نشان داده اند، این مقاله پیش بینی بازده در تشکیل پورتفولیو را با مدل یادگیری ماشین، یعنی جنگل تصادفی و مدل یادگیری عمیق حافظه ی کوتاه مدت طولانی ترکیب می کند. به منظور ارزیابی عملکرد مدل پیشنهادی، داده های تاریخی 5 ساله از سال 1396 تا 1401 از شاخص 5 صنعت بانکی، خودرویی، دارویی، فلزی و نفتی است. نتایج تجربی نشان می دهد که مدل های بهینه سازی میانگین واریانس با پیش بینی بازدهی به وسیله جنگل تصادفی ، بهتر عمل می کنند.
۳۸.

تشخیص انسان با استفاده از دوربین های حرارتی(مقاله علمی وزارت علوم)

نویسنده:

کلیدواژه‌ها: تصویر حرارتی تشخیص انسان الگوریتم یولو شبکه عصبی عمیق یادگیری عمیق

حوزه‌های تخصصی:
تعداد بازدید : ۱۰۱ تعداد دانلود : ۶۵
هدف: امروزه با توجه به وجود تهدیدات متنوع برای برای افراد و اماکن خصوصی و دولتی تمام تلاش ها برای بهره برداری از پیشرفت های تکنولوژیک موجود برای جلوگیری از حوادث ناگوار و حفاظت از مردم و اماکن آنها انجام می شود. برای نظارت و کنترل محیط امروزه به طور گسترده از سیستمهای نظارتی مبتنی بر دوربین استفاده می شود. دوربین های معمولی مورد استفاده در این سیستمها در شرایط آب و هوایی مختلف و یا در طول شب برای شناسایی و تشخیص اشیاء با چالش روبرو هستند و نتایج ضعیفی ارائه می دهند. برای افزایش امنیت و نظارت در مناطق حفاظت شده، شناسایی افراد و تحرکات مشکوک در شرایط آب و هوایی مختلف و در طول 24 ساعت شبانه روز بسیار مهم است. روش شناسی: این تحقیق از نظر هدف کاربردی است و نتایج این پژوهش با استفاده از روش های مبتنی بر شبیه سازی ارائه شده است. یافته ها: با پیشرفت فناوری و استفاده گسترده از تصاویر حرارتی، شاهد روندی تحولی در حوزه تشخیص و شناسایی اشیا هستیم. تصاویر حرارتی، امکان دست یابی به اطلاعاتی در مورد میزان انتقال حرارت یک سطح و شکل آن را برای ما فراهم می کنند. در این مقاله، هدف ما، استخراج و تحلیل اطلاعات مفید تصاویر حرارتی با هدف شناسایی و تشخیص انسان با استفاده از دوربینهای حرارتی است. نتیجه گیری: ما برای شناسایی و تشخیص اشیاء در ویدیوی حرارتی از شبکه یولو3 استفاده کرده ایم. براساس نتایج حاصل با 6/94 mAP = قادر به شناسایی و تشخیص انسان در ویدیوهای خروجی از دوربین حرارتی شده ایم.
۳۹.

ارائه ی مدل پیش بینی کننده تحلیل احساسات کاربران از شهر مبتنی بر شبکه ی اجتماعی توئیتر؛ نمونه مطالعاتی: کلان شهرهای ایران(مقاله علمی وزارت علوم)

نویسنده:

کلیدواژه‌ها: تحلیل احساسات یادگیری ماشین یادگیری عمیق توئیتر شبکه ی اجتماعی

حوزه‌های تخصصی:
تعداد بازدید : ۱۳۶ تعداد دانلود : ۹۵
تحلیل احساسات کاربران از طریق شبکه های مجازی، به حوزه ای موثر در علوم مختلف تبدیل شده و مخاطبان آن نه تنها صاحبان شرکت ها و سیاست مدارن، بلکه کاربران هستند. در این میان این حوزه در مطالعات شهری هم نفوذ کرده و به دلیل روش مندی آن؛ چه در قالب پژوهش هایی که صرفاً تحلیل احساس را هدف خود قرار داده اند و چه به صورت لایه ای تلفیقی در پژوهش ها مورد استفاده برنامه ریزان و طراحان شهری قرار گرفته است. مقاله ی پیش رو با هدف تبیین این حوزه در تحلیل احساسات شهری در قالب روش های مدل گرا بر آن است تا با بررسی اهمیت احساس و روش های مطرحِ بررسی آن در شهر، جایگاه این حوزه را در مطالعات شهری نشان دهد و در ادامه به آموزش ماشین برای ارائه ی مدل پیش بینی کننده برای تحلیل احساسات شهر بپردازد. مجموعه ی داده های این پژوهش مربوط به 8 کلان شهر ایران است که از توئیتر استخراج شده و تحلیل داده های متنی مورد توجه قرار گرفته است. به منظور آموزش ماشین برای تحلیل احساسات از یادگیری ماشین و یادگیری عمیق بهره برده شده و نتایج آنها با هم مقایسه شده است. الگوریتم های مورد استفاده در یادگیری ماشین، ماشین بردار پشتیبان، رگرسیون لجستیک و درخت تصمیم بوده و در یادگیری عمیق، ماشین با استفاده از شبکه ی عصبی و شبکه ی هیبریدی آموزش و تست شده است. براساس نتایج یادگیری عمیق برای پیش بینی احساسات و قطبیت متن در کلان شهرهای ایران بهتر عمل کرده و دقتی برابر با 80 داشته است.
۴۰.

شناسایی خودکار شناورهای سطحی در سونار غیرفعال با استفاده از فناوری های نوظهور هوش مصنوعی و یادگیری عمیق(مقاله علمی وزارت علوم)

کلیدواژه‌ها: فناوری نوظهور یادگیری عمیق سونار غیرفعال هوش مصنوعی شناسایی خودکار اهداف

حوزه‌های تخصصی:
تعداد بازدید : ۱۴۹ تعداد دانلود : ۸۰
هدف: سیستم های هوشمند شناسایی خودکار اهداف زیرآبی، به طور فزاینده ای در سونار غیرفعال استفاده می شوند تا دخالت انسانی و چالش های مربوط به آن را در شناسایی دقیق شناورها کاهش دهند. امروزه روش های بسیار پیشرفته یادگیری عمیق به منظور شناسایی خودکار اهداف صوتی، توسط نیروهای دریایی جهان در حال بهره برداری می باشند.روش شناسی: در این مقاله روشی جدید در زمینه شناسایی خودکار اهداف صوتی زیر آب مبتنی بر الگوریتم های یادگیری عمیق ارائه شده است. در این روش ابتدا سیگنال های صوتی خام از هایدروفونها دریافت شده و پس از انجام پیش پردازش های لازم، با استفاده از تبدیل فرکانسی زمان_کوتاه، تصاویر طیف نگار مربوط به داده های صوتی سونار غیرفعال تولید شده و به لایه های پنهان مدل برای اعتبارسنجی و طبقه بندی ، تغذیه می شود.یافته ها: نتایج بدست آمده نشان می دهد این مدل می تواند به طور خودکار چندین ویژگی را که برای دسته بندی کلاس های مختلف کشتی مورد نیاز است را استخراج نمایند و با جستجوی آموزنده ترین ویژگی از داده های سوناری، موجب افزایش دقت شناسایی و کاهش خطای ارزیابی گردند.نتیجه: دقت شناسایی مدل پیشنهادی بیش از 97% و خطای ارزیابی آن کمتر از 3% می باشد. در این روش با بهبود نسبی دقت طبقه بندی، سرعت شناسایی اهداف بطور قابل ملاحظه ای افزایش یافته است.