مطالب مرتبط با کلیدواژه

پیش بینی خسارت


۱.

طراحی سیستم ارزیابی هوشمند جهت پیش بینی خسارت بیمه های آتش سوزی با استفاده از یادگیری عمیق(مقاله علمی وزارت علوم)

کلیدواژه‌ها: ارزیابی ریسک بیمه آتش سوزی پیش بینی خسارت نظریه ریسک یادگیری عمیق

حوزه‌های تخصصی:
تعداد بازدید : ۱۸۰ تعداد دانلود : ۱۵۰
پیشینه و اهداف: بیمه آتش سوزی نوعی بیمه است که از خسارت مالی به اموال محافظت می کند. معمولاً حوادثی مانند آتش سوزی، سرقت و خسارت های مربوط به آب وهوا را پوشش می دهد و می تواند به جبران هزینه های تعمیر یا جایگزینی اموال آسیب دیده کمک کند. شرکت های بیمه و علاقه مندان به توسعه خدمات بیمه آتش سوزی به دنبال استفاده از روش های تحلیلی مدرن برای تجزیه وتحلیل بیمه نامه ها، ارزیابی و پیش بینی خسارت احتمالی آن ها برای مدیریت ریسک هستند. پیش بینی ادعای خسارت، معیاری حیاتی برای پیش بینی خسارت های آتی در شرکت های بیمه است. براساس نظریه ریسک، پیش بینی خسارت عنصری مهم در کسب وکار بیمه آتش سوزی برای ارزیابی حداکثر خسارت احتمالی است. روش شناسی: در این پژوهش سه معیار پیش بینی خسارت (احتمال وقوع، شدت، زمان بروز) با تهیه مجموعه داده، یادگیری و مقایسه الگوریتم های مختلف توصیف می شوند. در ابتدا، تجزیه وتحلیل داده های اکتشافی برای انتخاب ویژگی های مورد نیاز انجام شد و در نهایت 44 قلم اطلاعاتی از اطلاعات بیمه نامه و خسارت پرداختی رشته آتش سوزی انتخاب گردید. ابعاد مجموعه داده ها توسط روش حذف بازگشتی ویژگی ها کاهش یافته و برای هر الگوریتم، مجموعه مختلفی از فیلدهای اطلاعاتی مؤثر انتخاب شده است. ما بیش از 780،000 رکورد بیمه نامه و حدود 70،000 رکورد مرتبط خسارت پرداختی را برای یک بازه ده ساله (ابتدای 1390 تا ابتدای 1400) از بانک اطلاعاتی عملیاتی سامانه آتش سوزی بیمه ایران انتخاب کرده ایم. مدل های یادگیری رگرسیونی برتر مانند رگرسیون خطی، رگرسیون جنگل تصادفی، رگرسیون بردار پشتیبان و شبکه عصبی عمیق برای هر سه الگوریتم پیش بینی خسارت پیاده سازی شد. سپس دقت الگوریتم ها با مقدار میانگین مربعات خطا و مقدار میانگین خطای مطلق مقایسه شد. یافته ها : نتایج پیش بینی مدل نشان داد که بهترین الگوریتم برای هر سه معیار، یادگیری عمیق و مشخصاً شبکه عصبی چندلایه پرسپترون است. پس از تنظیم فراپارامترها و چندین بار اجرا، بهترین الگوریتم یادگیری عمیق با کمترین خطا با مقادیر 0.117 (احتمال وقوع)، 0.042 (شدت خسارت)، 0.106 (زمان بروز خسارت) حاصل شد. پیش بینی نتایج مدل نوآورانه ما در داده های آزمایشی، به این نتیجه رسید که مدل هوشمند ارائه شده دقت مناسبی دارد. شرکت های بیمه به شدت علاقه مند پیش بینی آینده اند و پیش بینی خسارت فرصتی برای کاهش زیان مالی برای شرکت فراهم می کند. به کارگیری یادگیری عمیق در پیش بینی خسارت آتش سوزی و پیش بینی زمان بروز خسارت، علاوه بر احتمال و شدت، نوآوری های مدل هستند. نتیجه گیری: یادگیری ماشین می توانند به شرکت ها کمک کنند تا خدمات خود را با دقت بیشتری بهینه کنند، مدیریت ریسک را تقویت و در نتیجه ابزارهایی برای تصمیم گیری بهتر فراهم نمایند. به کارگیری یادگیری عمیق در پیش بینی خسارت بیمه می تواند به صورت کاربردی جایگزین فرایند دستی پیچیده، زمان بر و نادقیق موجود در شرکت های بیمه شود و سرآغار توسعه نوین در مدیریت ریسک، مدیریت اتکایی و بهبود نرخ گذاری بیمه آتش سوزی باشد.
۲.

تشدید مسئولیت قراردادی؛ پاسخی به نقض عامدانه قرارداد(حقوق فرانسه، اسناد حقوقی، ایران و مبانی فقهی)(مقاله علمی وزارت علوم)

کلیدواژه‌ها: پیش بینی خسارت تشدید مسئولیت تقصیر عمدی تقصیر سنگین مسئولیت مدنی

حوزه‌های تخصصی:
تعداد بازدید : ۸۹ تعداد دانلود : ۸۲
نقض قرارداد، اصولاً موجب مسئولیت مدنیِ قراردادی متعهد است؛ اما با وجود اصل لزوم جبران کامل خسارات، در اغلب نظام های حقوقی محدودیت هایی برای پرداخت غرامت شناخته شده است. یکی از مهم ترین محدودیت ها این است که تنها زیان های قابل پیش بینی در زمان انعقاد قرارداد، قابل مطالبه اند. پژوهش حاضر به روش تحلیلی-توصیفی و با مطالعه تطبیقی به این پرسش پاسخ می دهد که آیا عامدانه بودن نقض قرارداد می تواند توجیهی برای امکان مطالبه خسارات غیرقابل پیش بینی که در موقعیت های نقض عادی قابل مطالعه نیستند، باشد یا خیر؟ برآمدِ پژوهش نشان می دهد در مواردی که نقض قرارداد عامدانه است، شرط قابلیت پیش بینی ملغی شده و به دنبال آن اصل جبران کامل احیا می شود و درنتیجه حتی خسارات غیرقابل پیش بینی نیز قابل مطالبه می شوند. این امر که به معنای تشدید مسئولیت قراردادی و بر پایه های اخلاقی استوار است، در برخی نظام های حقوقی ملی و اسناد حقوقی بین المللی مورد پذیرش قرارگرفته است. در حقوق ایران و فقه امامیه نیز هرچند قاعده کلی در این رابطه نمی توان یافت، اما فروعات مختلفی وجود دارند که در آن ها خطاکاری عامدانه مرتکب، تشدید ضمان وی را به دنبال دارد.