فیلترهای جستجو:
فیلتری انتخاب نشده است.
نمایش ۲٬۶۰۱ تا ۲٬۶۲۰ مورد از کل ۴٬۷۶۹ مورد.
حوزههای تخصصی:
بررسی نو زمین ساختی منطقه ی کاکلی- راز واقع در خراسان شمالی با استفاده از شاخص های مورفومتری(مقاله علمی وزارت علوم)
حوزههای تخصصی:
منطقه ی مورد مطالعه در کپه داغ مرکزی، شمال بجنورد و شیروان، بین روستاهای کاکلی- راز قرار دارد. هدف از این پژوهش تفکیک مناطق فعال از مناطق با فعالیت کمتر می باشد. در این پژوهش برای ارزیابی میزان فعالیت تکتونیکی شاخص های طول- شیب رودخانه(SL) ، نسبت عرض کف دره به ارتفاع دره(Vf) ، فاکتور عدم تقارن توپوگرافی (T)و انتگرال هیپسومتریک (Hi) محاسبه گردید. گسل ها و شکستگی های منطقه با استفاده از باندVNIR تصویر ASTER استخراج گردید و شاخص-های مورفومتریک با استفاده از GIS و Global mapper محاسبه شد. بیشترین مقدار شاخص SL مربوط به پهنه های شمالی می باشد، افزایش شاخص SL در پهنه های شمالی مربوط به گسل ها و شکستگی هایی است که مسیر آبراهه ی اصلی را قطع می-کند، محاسبه ی شاخص Vf نشان می دهد که بیشترین نرخ بالاآمدگی مربوط به پهنه های شمالی می باشد، وجود دره های V شکل در آن منطقه نیز گویای این مطلب می باشد. محاسبه ی شاخص T در این پژوهش نشان می دهد که رودخانه های موازی با روند چین ها کج شدگی به سمت جنوب را نشان می دهند. بیشترین مقدار شاخص انتگرال هیپسومتریک مربوط به حوضه ی شمالی (شیرین رود) می باشد. نتایج این پژوهش نشان می دهد که بیشترین مقدار فعالیت تکتونیکی مربوط به قسمت شمالی منطقه ی مورد مطالعه می باشد، و قسمت شمالی کپه داغ مرکزی فعال تر از قسمت جنوبی آن می باشد.
بررسی اجمالی علوم طبیعی (لوت)
حوزههای تخصصی:
طرح گابریل Gabriel(1938‘ 1938 الف) نشان می دهد که ریگ لوت (1) ‘ توده ماسه ای بزرگ شرقی «توده ماسه ای درهم ومغشوش و غیر قابل عبوری » بوده است. با وجود این همین محقق در سال 1952 (یادداشت 68 صفحه 309) نظریاتی درمورد اقدام به یک عبور احتمالی را رائه می دهد. با توجه به آمد وشد عملی کاروانهای شتر با مسافات طولانی ومدتهای زیاد ‘ 22 یا 27 روز بدون آب در صحرا (2) من از سالها قبل به بازدید تپه های ماسه ای لوت می اندیشیم و این موضوع را با دکتر گابریل که پهنای تپه های ماسه ای رافقط 70 کیلومتر بر آورد کرده بود. درمیان نهادم‘ هر چند که این تپه های ماسه ای سخت باشند. با توجه به شرایط بیابانی نمی بایست مانع عبوری ساخته باشند. تنها‘ یافتن فرصت شناسایی این مسئله باقی بود.هنگامی که «یادداشت هایم را درمورد برنامه شناسایی علمی بیابان لوت جنوبی ایران» از 20 اکتبر 1964 مینوشتم ومی بایست با پیشنهاد R.C.R به مرکز ملی تحقیقات علمی مورد استفاده قرار گیرد‘ لزوم نفوذ به داخل توده های ماسه ای را ذکر کرده بودم. به کمک R.C.P شماره 14 که زیر نظر شناسایی با کاروان شتر در سرزمینی سخت ‘ اگر فاصله هم کوتاه باشد بداهتا امکان نخواهد داشت. به همین دلیل نسبت به همکارم آقای پروفسور احمد مستوفی حق شناسی فراوانی مدیونم که ترتیب سازمان دادن کاروان را «شتر» ساربان ‘ساز وبرگ ‘ آذوقه و غیره... به عهد گرفته وخود او نیز در این سفراکتشافی شرکت نمود. دستورالعملهای متعددی می توانست درنظر گرفته شود. بااعتقاد و تجارب فراوانی که در مسافرتهای سخت و طولانی بیابانهای داشتم‘ دستورالعمل سبکی را توصیه نمودم که دارای گشتی پرتحرک و سریع درمورد احتیاجات گوناگون بوده‘ شامل چند انسان (4 نفر) و تعدادمحدودی شتر (6 نفر) که از نظر آب و آذوقه دارای خوب مختاری فراوانی باشند. ولی دستورالعمل سنگین تری می بایست. زیرا کاروان شامل 16 انسان و 15 شتر بود. وعلاوه بر آن چادر ‘ رادیو بیسیم یک اسکوریت مسلح همراه داشته وهر روز در تپه های ماسه ای از یک منبع آب ‘ مصنوعی که وسیله هلیکوپتر تدارک دیده می شد. استفاده می کردیم‘ این ترتیب جدید و نامتداول برای بیابان گردان‘ عبور را نسبتا آسان نمود. ساعت پیاده روی درماسه ها برای شرکت کنندگان کاهش نیافت. اما به خوبی آگاه بودیم که پناه یک چادر و فراوانی غذا ‘ سختی عبور پیاده از توده بزرگ وخشن ماسه ای را به طور قابل ملاحظه ای کاهش می داد. باید اضافه کرد که برای من مشکل دومی به مشکلات بالا اضافه می شد. و آن تهیه نمونه های متعددی از زیا (Faune) و گیای (Flore) آبی در حواشی لوت مرکزی بود
ارزیابی مورفولوژی مجرای رودخانه لیقوان با روش طبقه بندی راسگن(مقاله علمی وزارت علوم)
حوزههای تخصصی:
در این مقاله به منظور تحلیل شرایط گذشته مورفولوژی مجرای رودخانه لیقوان (حدفاصل ایستگاه لیقوان و هروی)، داده های مقاطع عرضی رودخانه برای محاسبه پارامترهای مورفولوژیکی مانند نسبت عرض به عمق، شاخص گود افتادگی بستر، مساحت مقطع عرضی در بده لبریز، عرض بده لبریز، حداکثر عمق، عرض دشت سیلابی و شیب سطح آب به نرم افزار HEC-RAS معرفی شد و پارامترهای دیگری چون، ضریب انحنا و اندازه متوسط رسوبات بستر، برای طبقه بندی سطح II راسگن برای هر بازه به کار گرفته شد. نتایج نشان داد که رودخانه از نوع سینوسی بوده و بر اساس طبقه بندی راسگن بازه های ۲، 6، 20، ۲۱ و ۲۶ از نوع B ، بازه های 1، 4، ۵، ۷، ۸، 9، 10، 11، 12،۱۳،۱4،۱۷، 18، 19، 23، ۲۴، 25، 27 و 28 از نوع C، بازه 3، 15 و ۱۶ از نوع E هستند. در بازه نوع B، بستر و ساحل نسبتاً پایدار بوده و سیستم محدودی از ذخیره رسوبی دارند. در نوع C نسبت عرض به عمق بیش از ۱۲ بوده و میزان گودافتادگی بستر متوسط بوده و در زمان رویدادهای بزرگ، سیلاب ، دشت سیلابی را فرامی گیرد. در نوع E نسبت عرض به عمق کم بوده و میزان ضریب انحنا بالاست و این رودخانه ها پایدار هستند. در نهایت تعدادی از مجراها به خوبی با این طبقه بندی سازگار بوده و تعدادی دیگر این قابلیت را نداشته اند. بنابراین این روش توانایی پیش بینی کمی ژئومورفیکی رودخانه لیقوان را دارد. درنتیجه این نوع طبقه بندی مورفولوژیکی از مجرای رودخانه، می تواند در توسعه طرح های مهندسی و بحث های مدیریتی و احیای رودخانه مورد استفاده قرار گیرد.
کوهزایی
حوزههای تخصصی:
برآورد ساختار جنگل کاج با استفاده از تصاویر رادارای(مقاله علمی وزارت علوم)
حوزههای تخصصی:
در این تحقیق، جهت برآورد پارامترهای ساختاری جنگل کاج، از داده های چندزمانه تصاویر رادار با روزنه مصنوعی[1] به دست آمده از ماهواره ALOS[2]-PALSAR[3]، پس از انجام تصحیحات هندسی و کاهش لکه (اسپکل[4])، خصوصیات مربوط به ضرایب بازپخش[5] و نیز اطلاعات بافتی، در پنجره هایی با اندازه ها و جهات مختلف، با استفاده از روش GLCM[6] استخراج شد. سپس با استفاده از رگرسیون خطی چند متغیره گام به گام[7]، مدل های تخمین برای نمونه های جمع آوری شده در طی عملیات زمینی به دست آمد. نتایج حاصل نمایانگر بهبود عملکرد مدل هایی بود که از داده های چندزمانه استفاده کرده بودند، همچنین این تحقیق نشان داد در حالی که ارتفاع متوسط درختان با خطای 7/20 درصد قابل تخمین است. خطای حاصل برای سایر پارامترهای ساختاری بیش از 30 درصد است. در این تحقیق تأثیر سن درخت و شیب اراضی بر عملکرد مدل ها نیز به صورت آماری بررسی شده است.
تولید شاخص چرخندگی روزانه و اثر آن روی دما و بارش منطقه خراسان در دوره 2010-(مقاله علمی وزارت علوم)
حوزههای تخصصی:
شاخص چرخندگی بیانکننده میزان اثر سامانه چرخندی یا واچرخندی در یک منطقه است. اهداف این پژوهش، تولید شاخصهای چرخندگی روزانه در استان خراسان متمرکز شده در مشهد با استفاده از نقشههای میانگین ارتفاع ژئوپتانسیل تراز 500 و 700 هکتوپاسکال، به تعداد 23011 در دوره 2010-1948، برآورد فراوانی سامانههای فشاری حسب تعداد روز حاکمیت در سال بر منطقه و پاسخ اقلیمی دما و بارش مشهد به شاخص چرخندگی می باشد. پنج نوع مختلف گردش جوی شامل منطقه واقع در حاشیه ناوه، خط ناوه، زین ارتفاعی یا الگوی ناشناخته، حاشیه پشته و خط پشته بر مبنای انحنای تراز ارتفاعی ژئوپتانسیل طبقهبندی گردید و درنتیجه سری زمانی شاخص چرخندگی روزانه ساخته شد؛ میانگینهای فراوانی انواع گردش جوی در تراز 500 هکتوپاسکال به ترتیب برابر 67، 15، 111، 105 و 66 روز در سال بودند. سامانههای کمفشار (حاشیه و خط ناوه) در 23% و سامانههای پرفشار (حاشیه و خط پشته) در 47% روزهای سال حاکم بر منطقه بودند. تخمین پوشش مکانی شاخص چرخندگی تا شعاع حدود 300 کیلومتر از نقطهی مرکزی و سطحی بالغ بر 280 هزار کیلومتر مربع میباشد. در نیمه گرم سال به طور مطلق سامانه پرفشار (الگوی پشته) حاکم است که نشاندهنده حاکمیت کمربند پرفشار جنبگرمسیری بر منطقه است. در نیمه سرد سال فراوانی الگوهای پشته، زین ارتفاعی و ناوه به ترتیب برابر 47%، 23% و 20% بودند. میزان همبستگی شاخص چرخندگی و تغییرات دما و بارش در مشهد در مقیاس ماهانه (تراز 500 هکتوپاسکال) به ترتیب برابر 81/0- و 50/0 میباشد.
شناسائی رژیم های بارش ایران به روش تحلیل خوشه ای(مقاله علمی وزارت علوم)
حوزههای تخصصی:
در این بررسی داده های بارش ماهانه ایران از ژانویه 1951 تا دسامبر 1999 برای شناسایی رژیم های بارش ایران بررسی شد. به کمک این پایگاه داده، نقشه های رقومی بارش ماهانه با تفکیک مکانی 15×15 کیلومتر محاسبه شد. مقادیر بارش هر ماه به بارش سالانه تقسیم شد و بارش نسبی برای هر ماه روی هر گره1 از نقشه های بارش بدست آمد. یک تحلیل خوشه ای پایگانی با روش ادغام وارد2 روی یک نمونه تصادفی هزار تایی از پایگاه داده های برآوردی اعمال شد و روشن شد که در ایران سه رژیم بارش اصلی قابل شناسایی است: رژیم بارش زمستانی، رژیم بارش زمستانی- بهاری و رژیم بارش پاییزی. آرایش مکانی این رژیم های بارش نشان می دهد که توزیع زمانی بارش در ایران با عرض جغرافیایی ارتباط دارد. با این حال رژیم های زمستانی و زمستانی-بهاری هر یک تحت تأثیر شرایط محلی به چندین رژیم فرعی تقسیم می شوند. رژیم های بارش اصلی از نظر بارش فصلی و رژیم های فرعی از نظر توزیع درون فصلی بارش (سهم بارش هر یک از ماه های یک فصل معین) از هم متمایز می شوند.
ارزیابی ارتباط خشکسالی هواشناسی با افت سطح آب های زیرزمینی دشت تبریز(مقاله علمی وزارت علوم)
حوزههای تخصصی:
دشت تبریز در΄15˚46-΄30˚45 طول شرقی و΄17˚38-΄56˚37 عرض شمالی و در شرق دریاچه ارومیه واقع شده است. در دهههای اخیر، بطور منطقهای و در دشت تبریز خشکسالیهای متناوب و گاهی مستمر و شدیدی رخ داده است. همزمان سطح آب زیرزمینی دشت کاهش چشمگیری نشان میدهد. از اینرو به نظر میرسد، بین وقوع خشکسالیهای هواشناسی و افت سطح آبهای زیرزمینی بتوان رابطة معنیداری پیدا کرد. در این راستا، هـدف پژوهش حاضـر بررسـی خشکسالیهای دشت با شاخصSPI ، پیگیری روند بارشها، تحلیل هیدروگراف واحد آبهای زیرزمینی و ارزیابی تأثیر خشکسالیهای هواشناسی در افت آب زیرزمینی در دشت تبریز با استفاده از روش آمار دومتغیره میباشد. برای این منظور، از دادههای هواشناسی شامل متوسط بارش ماهانه ایستگاههای دشت تبریز در دورة آماری (83-1351) برای تعیین دورههای خشکسالی، دادههای ماهانه سطح آب چاههای مشاهدهای و پیزومتر دشت در دوره آماری (83-1370) برای نشان دادن نوسانات سطح آب زیرزمینی، نرمافزارهایArc/GIS ، Arc/View، Excell و Surferاستفاده شد. نتایج مطالعه نشان میدهد که در دوره آماری (83-1370) سطح آبهای زیرزمینی سیر نزولی داشته و 94/3 متر افت دارند. خشکسالی آبهای زیرزمینی نیز با دو ماه تأخیر نسبت به خشکسالی هواشناسی بروز میکند.
آب و هواهای سیلابی
حوزههای تخصصی:
مطالعه ی تأثیر آب و هوا بر روی فاسیولاهپاتیکا (کپلک کبد دامی)
حوزههای تخصصی:
مقایسه عملکرد مدل درختی M5 با مدل های شبکه عصبی مصنوعی و ماشین بردار پشتیبان در استخراج منحنی تداوم جریان مطالعه موردی: ایستگاه خزانگاه رودخانه ارس(مقاله علمی وزارت علوم)
حوزههای تخصصی:
یکی از مهم ترین و پرکاربردترین علائم پاسخ هیدرولوژیک حوزه، منحنی تداوم جریان است و در کاربرد های هیدرولوژیکی بی شماری برای آنالیز فراوانی جریان های کمینه و سیلاب مورد استفاده قرار می گیرد. برای نمایش محدوده کامل دبی رودخانه، از جریان های حداقل تا حداکثر سیلاب و منحنی تداوم جریان (FDC) استفاده می شود؛ بنابراین استخراج دقیق این منحنی ها با حداقل خطا حائز اهمیت فراوانی است. در این مطالعه کارایی مدل درختی M5 در استخراج منحنی تداوم جریان در مقایسه با شبکه عصبی مصنوعی و ماشین بردار پشتیبان برای ایستگاه خزانگاه رودخانه ارس واقع در استان آذربایجان شرقی بررسی شد. با توجه به نتایج به دست آمده در مدل درختی M5 ، ترکیب 80% داده ها برای آموزش و مابقی برای تست مدل، بهترین عملکرد را در ارائه منحنی تداوم جریان با 992/0 R 2= ، ( m 3/s )47/5 RMSE= و ( m 3/s ) 38/4 MAE= نشان داد . با بررسی نتایج مدل های مختلف شبکه عصبی ، بهترین مدل با 2 نرون برای لایه مخفی با مقادیر 997/0 R 2= ، ( m 3/s ) 91/3 RMSE= و ( m 3/s ) 30/3 MAE= به دست آمد . بررسی عملکرد کرنل RBF مدل ماشین بردار پشتیبان نشان داد که این مدل بهترین عملکرد را در شبیه سازی منحنی تداوم جریان داشت؛ به طوری که دارای حداقل مقدار مجذور میانگین مربع های خطا (( m 3/s ) 98/2 RMSE= )، بالاترین ضریب همبستگی (998/0 R 2= ) و کمترین مقدار خطای نسبی (( m 3/s ) 66/2 MAE= ) بود. مقایسه نتایج بین انواع مدل های هوشمند مورد بررسی، بیانگر این است که هر سه مدل در تخمین مقادیر دبی منحنی تداوم جریان عملکرد مناسبی دارند؛ اما مدل درختی M5 به علت سادگی محاسبات و ارائه روابط شده، به لحاظ کاربردی قابلیت بیشتری می تواند در استخراج منحنی تداوم داشته باشد.
تحلیل همبستگی بین وسعت مساکن روستایی و ساختار توپوگرافیکی (بررسی موردی: روستاهای کوهستانی و دشتی لیقوان و کندرود در استان آذربایجان شرقی)
حوزههای تخصصی:
آشکارسازی تغییرات بارش های حدی و نسبت دهی به تغییر اقلیم با استفاده از روش استاندارد انگشت نگاشت بهینه (مطالعه موردی : جنوب غرب ایران)(مقاله علمی وزارت علوم)
حوزههای تخصصی:
هدف از این تحقیق ، تعیین سهم اثرات محرّکهای مختلف تغییر اقلیم بر تغییرات بارش های حدّی جنوب غرب ایران می باشد. محدوده مورد مطالعه شامل حوضه های آبریز مهمی چون حوضه های کارون بزرگ ، زهره و جراحی و کرخه می باشد. شاخص های حداکثر بارش سالانه و حداکثر مجموع بارش پنج روزه در سال ،طی دوره آماری 2005-1951 با استفاده از پایگاه داده های بارش روزانه افرودیت(APHRODITE) به عنوان مشاهدات و شبیه سازی های مدل NorESM1-M ، تهیه و بررسی شدند . با استفاده از رویکرد بزرگ مقیاس نمایی و با استفاده از روش نزدیکترین همسایگی ، میانگین سلول منطقه ی مورد مطالعه بین طول جغرافیایی 48 تا 52 درجه ی شرقی و عرض جغرافیایی 30 تا 33 شمالی محاسبه گردید . سهم محرک های خارجی پدیده تغییر اقلیم شامل اثرات ترکیبی انسانی و طبیعی (ALL) ، اثرات جداگانه طبیعی (NAT) و اثرات جداگانه گازهای گلخانه ای (GHG) بر تغییرات بارش های حدی منطقه با استفاده از روش انگشت نگاشت بهینه آشکارسازی و نسبت دهی برای اولین بار در ایران در این پژوهش مورد بررسی قرار گرفت . نتایج به دست آمده نشان می دهند که سهم سیگنال (ALL) در تغییرات بارش های حدی جنوب غرب ایران طی دوره آماری 2005-1951 قابل آشکارسازی و نسبت دهی هستند . اما هیچ گونه آشکارسازی برای اثرات جداگانه طبیعی (NAT) و اثرا جداگانه گازهای گلخانه ای (GHG) تایید نگردید. درصد تغییرات روند قابل نسبت دهی به اثرات ترکیبی انسانی و طبیعی برای Rx1day و Rx5day به ترتیب 64/1 درصد ( 18/0 تا 1/3) و 5/2 درصد(1 تا 4 درصد) برآورد گردید.
بررسی رابطه گرانولومتری رسوبات تپه های ماسه ای با جهت باد غالب (مطالعه موردی: ارگ حسن آباد بافق)
هیدرولوژی پالئوسیلاب، رویکرد ژئومورفولوژی مدرن در ارزیابی مخاطره سیلاب(مقاله علمی وزارت علوم)
حوزههای تخصصی:
به دلیل تازه تأسیس بودن بسیاری از ایستگاه های آب سنجی و یا تخریب و انهدام کلّی آنها در اثنای وقوع سیلاب های بزرگ، گزارش دبی های ثبت شده اینگونه وقایع کاتاستروفیک کم بوده و داده های مربوط به آن ها یا حاصل تخمین های غیرمستقیم دبی بعد از وقوع سیلاب و یا تعمیم سیلاب های مشاهده شده 40- 30 سال گذشته است. به همین دلیل، روش های متداول هیدرولوژیک برای تخمین حداکثر سطح، حجم و دوره برگشت این سیلاب ها نتایج قابل اطمینانی بدست نمی دهد و فاقد دقت لازم برای برنامه ریزی های کنترل سیلاب است. لوگ پیرسون تیپ 3، روش برآورد گامبل، حداکثر بارش محتمل(PMP) و سایر فنون آماری زمانی قابل اعتمادند که دوره برگشت مورد محاسبه کوتاه تر و یا معادل دوره آماری پایه باشد. ضعف اساسی روش های آماری و نیاز به تخمین های دقیق تر باعث ترغیب ژئومورفولوژیست ها به استفاده از معیارهای ژئومورفولوژیک برای بازسازی سیلاب های قدیمی و بهره گیری از نتایج آن در پیش بینی سیلاب های احتمالی آتی گردید؛ بطوری که از دهه 1980 شاخه ای در ژئومورفولوژی رودخانه ای تحت عنوان هیدرولوژی پالئوسیلاب در آمریکا پایه ریزی گردید و به سایر مناطق جهان گسترش یافت. این مقاله از نوع مروری بوده و هدف کلی آن آشنایی با موضوع هیدرولوژی پالئوسیلاب و ترغیب محققین علوم زمین به استفاده از آن به عنوان یک راه حل عملی خوب برای تخمین دوره های برگشت سیلاب های بزرگ، ارزیابی و تهیه نقشه-های خطر، برنامه ریزی بهتر برای نواحی مستعد سیلاب (بر مبنای داده های واقعی) و حفظ محیط زیست است.