آرشیو

آرشیو شماره ها:
۶۴

چکیده

مهمترین مساله برای سرمایه گذاران فعال در بازار سرمایه، پیش بینی قیمت سهام می باشد. هدف اصلی این مطالعه نیز بررسی کاربردپذیری پیش بینی قیمت سهام به وسیله شاخص های تحلیل تکنیکی با استفاده از شبکه های عصبی و مقایسه این روش با سایر روش های پیش بینی از جمله شبکه عصبی استفاده کننده از قیمت سهام و مدل های ARIMA می باشد. در این تحقیق قیمت سهام ده روز آینده چهل شرکت فعال در بورس اوراق بهادار تهران با استفاده از سه روش مختلف پیش بینی می شود. در روش اول با استفاده از یک شبکه عصبی پیش خور تک لایه با الگوریتم یادگیری لونبرگ - مارکوات و معیار عملکرد میانگین مربعات خطا با ورودی ارزش بازار، قیمت پیش بینی می شود. سپس علاوه بر ورودی ارزش بازار، میانگین های متحرک پنج، ده و بیست روزه و ROC و RSI دوازده روزه نیز به عنوان ورودی به شبکه معرفی گردید و پیش بینی صورت گرفت. قیمت سهام با استفاده از مدل های ARIMA نیز برای کلیه شرکت های پیش بینی شد. با استفاده از تحلیل واریانس سه روش مختلف پیش بینی با یکدیگر مقایسه گردیدند. از آنجا که در مورد سی شرکت پیش بینی قیمت توسط مدل های ARIMA به طور معنی داری نسبت به مدل های شبکه عصبی نتایج بهتری ارایه نموده است می توان اظهار داشت که مدل های خطی - ARIMA بهتر از مدل های غیر خطی، شبکه های عصبی - توانسته اند پیچیدگی های سری های زمانی قیمت سهام را تجزیه و تحلیل نموده و برای پیش بینی قیمت سهام مورد استفاده قرار گیرند.

تبلیغات