فیلترهای جستجو:
فیلتری انتخاب نشده است.
نمایش ۴۴۱ تا ۴۶۰ مورد از کل ۸۰۳ مورد.
ارائه مدل پیشبینی شاخص کل قیمت سهام با رویکرد شبکههای عصبی (مطالعه موردی: بورس اوراق بهادار تهران)(مقاله علمی وزارت علوم)
حوزههای تخصصی:
هدف تحقیق حاضر ارائه مدل پیشبینی شاخص قیمت سهام در بورس اوراق بهادار با استفاده از شبکههای عصبی مصنوعی است. بر این اساس، شاخص صنعت، شاخص مالی و شاخص بازده نقدی به صورت سالانه به عنوان متغیرهای ورودی (مستقل) طرح شد. برای ارزیابی مدل شبکه عصبی از طرح MLP با الگوریتم آموزش پس انتشار و مدل چند عاملی بهره گرفته شده است. نتایج نشان میدهد که مدل شبکه عصبی پیشنهادی، توانایی بالایی در پیشبینی شاخص قیمت سهام در بورس اوراق بهادار تهران را دارا میباشد. در پایان مقاله، بحث، نتیجه گیری، پیشنهادات کاربردی و نیز مواردی در خصوص ادامه و پیگیری تحقیقات مشابه در آینده بیان شده است.
تحلیل فقهی و اقتصادی قراردادهای آتی
حوزههای تخصصی:
دو نیمه متفاوت
حوزههای تخصصی:
شفاف سازی در بازار اوراق بهادار
حوزههای تخصصی:
چارچوب نظری تبیین عوامل موثر بر توسعه مالی (با تاکید بر مدل ویلیامسون)
حوزههای تخصصی:
بازار بیزار
حوزههای تخصصی:
- حوزههای تخصصی اقتصاد اقتصاد کلان و اقتصاد پولی سیاست پولی و بانک مرکزی،عرضه پول و اعتبار عرضه پول،اعتبار،ضرایب فزاینده پولی
- حوزههای تخصصی اقتصاد اقتصاد کلان و اقتصاد پولی قیمت ها،نوسانات تجاری،دورهای تجاری سطح عمومی قیمت ها،تورم
- حوزههای تخصصی اقتصاد اقتصاد مالی بازارهای مالی قیمت گذاری دارائی،حجم مبادله،نرخ های بهره اوراق قرضه
گوش به زنگ باشید
پیش بینی شاخص کل بورس اوراق بهادار تهران با مدل ARFIMA(مقاله علمی وزارت علوم)
حوزههای تخصصی:
در این مقاله با استفاده از دادههای روزانه شاخص کل بورس اوراق بهادار تهران در دوره زمانی 6/1/1382 تا 14/4/1386، به بررسی ویژگی حافظه بلند این شاخص پرداخته و مدل ARFIMA را بر آن برازش میدهیم. همچنین عملکرد پیشبینی مدل ARFIMA را با مدل ARIMA مقایسه میکنیم. نتایج نشان میدهند که اولاٌ این سری زمانی از نوع حافظه بلند است، بنابراین میتوان با تفاضلگیری کسری آن را مانا کرد. پارامتر تفاضلگیری بهدست آمد. پس از تفاضلگیری کسری و تعیین تعداد وقفههای اجزای خودبازگشت و میاانگین متحرک مدل، شکل کلی بهصورت ، مشخص میشود. پارامترهای این مدل برای 900 داده درون نمونهای برآورد شده است و از آنها برای پیشبینی 70 داده خارج از نمونه استفاده میشود. مقایسه عملکرد پیشبینی مدل ARFIMA با مدل ARIMA، نشان میدهد که مدل ARFIMA از قدرت پیشبینیکنندگی بالاتری برخوردار است.
بزرگ تر از بورس
هووی بورس تهران
حوزههای تخصصی:
مقایسه عملکرد مدل های مختلف در خصوص پیش بینی نوسان بازده بورس اوراق بهادار تهران و تحلیل تاثیر برخی عوامل بر رفتار نوسان بازده(مقاله علمی وزارت علوم)
حوزههای تخصصی:
در این پژوهش، عملکرد پیش بینی مدل های نوسان شرطی و غیرشرطی (11 مدل) در خصوص پیش بینی نوسان شاخص نقدی و قیمت بورس تهران را بر اساس معیارهای ارزیابی(متوسط قدرمطلق خطا) ، میانگین مربعات خطا و تایل مورد بررسی قرارداده ایم. افزون بر این، تاثیر عواملی نظیر دامنه مجاز و نحوه محاسبه نوسان بر رفتار آن را نیز مورد تجزیه و تحلیل قرار داده ایم. نتایج نشان می دهد عملکرد مدل میانگین متحرک 250 روزه، هموارسازی نمایی و CGARCH طبق معیارهای RMSE و Theil از مدل های دیگر بهتر است. از سوی دیگر، طبق مدل های نوسان شرطی(به استثنای مدل PARCH) تغییر دامنه مجاز نوسان بر روی نوسان تاثیرگذار بوده، در حالی که مدل میانگین متحرک خودرگرسیو (ARMA) خلاف آن را نشان می دهد. مطالعه رفتار نوسان به صورت روزانه و ماهانه نیز نشان می دهد که نوسان در این دو حالت رفتار متفاوتی از خود نشان می دهد.
مقدمه ای بر بازار سرمایه و بورس اوراق بهادار
حوزههای تخصصی: