The advent of big data marks a profound shift in our epistemological framework, introducing a new knowledge paradigm where the social landscape is shaped by data processing, perceived as both comprehensive and natural. This transformative shift challenges traditional notions of human agency in societal understanding, positioning empirical quantification at the forefront of inquiry. Beyond philosophical implications, pragmatic challenges abound in big data research—from issues of commensuration and the influence of action grammars to the dominance of correlational over causal relationships, the prevalence of everyday data over historical archives, and the pervasive impact of algorithms on data ecosystems. This manuscript undertakes a comprehensive exploration of these challenges, proposing strategies for navigating them within emerging disciplines such as Digital Humanities, Social Computing, and Cultural Analysis. Methodologically anchored in constructivist principles and critical discourse analysis (CDA), the study investigates how socio-cultural contexts shape data and knowledge production. Drawing on extensive literature and meta-analyses, it synthesizes diverse perspectives to underscore the necessity for methodological innovation and reflexivity in addressing the complexities of big data research, ensuring the integrity and depth of social inquiry amidst evolving data-driven methodologies.