مدل سازی پویایی های قیمت و پیش بینی ریسک در بورس اوراق بهادار تهران: مدل های غیرخطی غیرگوسی تلاطم تصادفی (مقاله علمی وزارت علوم)
درجه علمی: نشریه علمی (وزارت علوم)
آرشیو
چکیده
هدف: تلاطم و سنجه ریسک، پارامترهای ضروری در برنامه های مدیریت ریسک هستند که بر فعالیت های اقتصادی و اعتماد عمومی در بازار سهام تأثیر می گذارند. همچنین این دو، پارامترهای کلیدی در مطالعاتی هستند که ارتباط بین بازار سهام، رشد اقتصادی و سایر متغیرهای مالی را بررسی می کنند. بی ثباتی در بورس اوراق بهادار تهران در سالیان اخیر، کنترل اثرهای منفی ناشی از تلاطم قیمت های سهام، پیش بینی و مدل سازی پویایی های قیمت و اندازه گیری ریسک را برای مشارکت کنندگان در این بازار ضروری کرده است. روش: در پژوهش حاضر، از کلاس مدل های پارامترمحور تلاطم تصادفی برای پیش بینی تلاطم قیمت های سهام و محاسبه ریسک بورس اوراق بهادار تهران استفاده شده است. برای بررسی جامع، مدل ها به گونه ای انتخاب شده است که ویژگی های خوشه ای بودن تلاطم، عدم تقارن در تلاطم (اثر اهرمی) و دُم سنگین بودن توزیع بازده قیمت سهام (با توزیع t و نرمال چوله) را دربرگیرند. یافته ها: بر اساس فاکتور بیزی، مدل تلاطم تصادفی با توزیع نرمال چوله (SNSV) در پیش بینی تلاطم بازار سهام، از سایر مدل ها کاراتر است؛ بنابراین به منظور تجزیه وتحلیل ریسک های بازار سهام با استفاده از مدل های تلاطم تصادفی، به لحاظ کردن اثر اهرمی در فضای حالت معادله تلاطم این مدل ها نیازی نیست. نتیجه گیری: نتایج حاکی از آن است که مدل SNSV برآورد مناسبی از تلاطم ارائه می دهد و پیش بینی ها با استفاده از آن، شفافیت بازار و مدیریت ریسک را بهبود می بخشد. همچنین پس آزمون های ارزیابی ریسک بازار VaR و CVaR با استفاده از آزمون کوپیک و DQ، شواهدی از برآورد بیش ازحد یا کمترازحد ریسک را نشان نمی دهد.Modeling Price Dynamics and Risk Forecasting in Tehran Stock Exchange Market: Nonlinear and Non-gaussian Models of Stochastic Volatility
Objective: The daily observations of the total index of the Tehran Stock Exchange show that in the last few years, stock prices have been very volatile. This volatility can harm the economic environment of Iran. Modeling and predicting price volatility in this market can provide important information about uncertainty and risk to actors and thus help with managing possible unwanted changes in the field of financial investments. This, along with the rise in the value of the stock market in recent years, has caused the investigation of the issue of volatility to become increasingly popular among academicians and financial policymakers. Volatility and risk measurements are essential parameters in risk management programs and can affect a country’s economic activity and public confidence. These are also key parameters in studies that examine the relationship between the stock market, economic growth, and other financial variables. Tehran Stock Exchange markets have been volatile in recent years. Controlling the negative effects caused by stock price volatility has made it necessary to predict and model price dynamics for participants in this market. Methods: In this paper, the class of Parameter-Driven volatility models (stochastic volatility models) is used to predict the price volatility and calculate the risk of the price index in the Tehran stock market. Therefore, four stochastic volatility models were used. To make a comprehensive review, the asymmetry in the volatility (leverage effect) and the heavy tail of the stock price return distribution (with t- student distribution and Skew normal) have been included in the models. To estimate the models, the Gibbs sampling method was used, and to accurately compare the models, the test based on the posterior distribution of the models and the Bayesian factor was used. Results: The results indicated that the canonical stochastic volatility model with Skew normal distribution (SNSV) is more effective than other stochastic volatility models in predicting the price of stock market volatility based on the Bayesian factor. Therefore, to analyze stock market risks using stochastic volatility models, there is no need to include the leverage effect in the state space of the Volatility equation. Conclusion: The SNSV model makes it possible to observe volatility and make predictions related to it, thereby improving market transparency and ultimately making diversification and risk management easier to implement. Also, the backtests of VaR and CVaR market risk assessment using Kupiec and DQ tests do not show evidence that the estimation is over or under the risk limit. As a result, the calculation of volatility and pricing with this model will lead to more precision risk management for professionals, especially fund managers who intend to include Tehran Stock Exchange stocks for asset allocation.