آرشیو

آرشیو شماره‌ها:
۶۹

چکیده

اندازه و روند شاخص های قیمت سهام یکی از مهمترین عوامل تاثیرگذار بر تصمیمات سرمایه گذاران در بازارهای مالی می باشد. جهت پیش بینی بازار از تکنیکهای مختلفی استفاده شده است که معمول ترین آنها روشهای رگرسیون و مدل های ARIMA هستند اما این مدل ها در عمل جهت پیش بینی بعضی از سریها ناموفق بوده اند. در تحقیق حاضر برای پیش بینی شاخص کل بورس از مدل شبکه های عصبی پیش خور با قانون یادگیری پس انتشار خطا5 در سه ساختار شبکه با الگوهای متفاوت ورودی استفاده گردید و نتایج مدل با نتایج مدل های رگرسیون چند متغیره و مدل های ARIMA مورد مقایسه قرار گرفت.نتایج تحقیق نشان داد که روش شبکه های عصبی خطای RMSE به میزان قابل توجهی کمتر از RMSE روشهای دیگر است و در بازار بورس اوراق بهادارتهران پیش بینی کوتاه مدت با فاصله زمانی کمتر، مناسب تر از پیش بینی بلند مدت با فاصله زمانی طولانی تر است.

تبلیغات