درخت حوزه‌های تخصصی

شبکه های عصبی و موضوعات مربوطه

فیلتر های جستجو: فیلتری انتخاب نشده است.
نمایش ۱ تا ۲۰ مورد از کل ۳۷ مورد.
۱.

کاربردهای شبکه های عصبی در پیش بینی سری های زمانی

کلید واژه ها: شبکه های عصبی سری زمانی نرم افزارMATLAB

حوزه های تخصصی:
تعداد بازدید : ۵۶۴۲ تعداد دانلود : ۲۶۸۰
استفاده از روش های غیر کلاسیک در شناسایی مدل و پیش بینی رفتار سیستم های پیچیده، مدتهاست در محافل علمی و حتی حرفه ای متداول و معمول شده است. در بسیاری از سیستم های پیچیده و خصوصا غیر خطی که مدل سازی و به دنبال آن پیش بینی و کنترل آنها از طریق روش های کلاسیک و تحلیلی امری بسیار دشوار و حتی بعضا غیر ممکن می نماید، از روش های غیر کلاسیک که از ویژگی هایی همچون هوشمندی، مبتنی بر معرفت و خبرگی برخوردار هستند، استفاده می شود. شبکه های عصبی، یکی از این روش های بدیع و در حال تحول است که در موضوعات متنوعی از قبیل الگوسازی، شناخت الگو، خوشه بندی و پیش بینی به کار رفته و نتایج مفیدی داشته است. در این مقاله، از شبکه های عصبی در پیش بینی سری های زمانی داده های اقتصادی استفاده کرده ایم. در این رابطه عوامل مختلف ساختاری، روش های مختلف یادگیری شبکه های عصبی و انتخاب و کاربرد مناسب داده ها در فرایند پیش بینی، مورد ارزیابی و بررسی قرار گرفته است. در این پژوهش، از ابزارهای محاسباتی نرم افزار MATLAB و داده های اقتصادی کشور استفاده شده است.
۲.

پیش بینی قیمت سهام در بازار بورس اوراق بهادار با استفاده از شبکه عصبی فازی و الگوریتم های ژنتیک و مقایسه آن با شبکه عصبی مصنوعی

کلید واژه ها: پیش بینی شبکه های عصبی فازی قیمت سهام الگوریتم های ژنتیک

حوزه های تخصصی:
  1. حوزه‌های تخصصی اقتصاد اقتصاد مالی بازارهای مالی پیش بینی های مالی
  2. حوزه‌های تخصصی اقتصاد روش های ریاضی و کمی روش های آماری و اقتصادسنجی:موضوعات خاص شبکه های عصبی و موضوعات مربوطه
تعداد بازدید : ۵۰۵۴ تعداد دانلود : ۲۳۰۵
سرمایه گذاری در سهام عرضه شده در بورس اوراق بهادار یکی از گزینه های پرسود در بازار سرمایه است. بازار سهام دارای سیستمی غیر خطی و آشوب گونه است که تحت تاثیر شرایط سیاسی، اقتصادی و روانشناسی می باشد و می توان از سیستم های هوشمند غیرخطی همچون شبکه های عصبی مصنوعی، شبکه های عصبی فازی و الگوریتم های ژنتیک برای پیش بینی قیمت سهام استفاده نمود. در این مقاله به طراحی و ارایه یک مدل پیش بینی قیمت سهام با استفاده از شبکه عصبی فازی و الگوریتم های ژنتیکی و کاهش خطای پیش بینی قیمت سهام با استفاده از آن نسبت به استفاده از تکنیک شبکه عصبی مصنوعی به صورت منفرد پرداخته شده است. در ادامه پس از طراحی و پیاده سازی مدل شبکه های عصبی فازی و الگوریتم های ژنتیک، با استفاده از چهار معیار سنجش خطا، نتایج دو مدل مقایسه شده است. نتایج نشان می دهد که مدل ترکیبی شبکه های عصبی فازی و الگوریتم های ژنتیک پیش بینی های بسیار مناسب تری داشته و نسبت به شبکه عصبی منفرد از سرعت بالاتر و توانایی تقریب قوی تری برای پیش بینی قیمت سهام برخوردار بوده است.
۳.

مقایسه مدل شبکه های عصبی مصنوعی با روش های رگرسیون لجستیک و تحلیل ممیزی در پیش بینی ورشکستگی شرکت ها

کلید واژه ها: کلیدواژگان: تحلیل ممیزی؛ رگرسیون لجستیک؛ شبکه عصبیِ مصنوعی؛ پیش بینی ورشکستگی

حوزه های تخصصی:
تعداد بازدید : ۴۸۹۲ تعداد دانلود : ۲۳۶۶
یکی از مهم ترین‌ موضوع های‌ مطرح‌ شده‌ در زمینه‌ مدیریت مالی، این است که سرمایه گذاران فرصت های مطلوب سرمایه گذاری را از فرصت های نامطلوب تشخیص دهند و منابعشان را در فرصت های مناسب سرمایه گذاری کنند. از مهمترین روش‌هایی که می توان با استفاده از آن به بهره گیری مناسب از فرصت های سرمایه گذاری و همچنین جلوگیری از به هدر رفتن منابع کمک کرد، پیش بینی ورشکستگی شرکت ها است. برای این منظور مدل های مختلفی وجود دارد. در این پژوهش جهت پیش بینی ورشکستگی از مدل شبکه های عصبی به همراه مقایسه آن با دو روش آماری رگرسیون لجستیک و تحلیل ممیزی استفاده شده است. در این مقاله علاوه بر معرفی مدل های شبکه های عصبی، یک مدل شبکه عصبی برای پیش بینی ورشکستگی شرکت های تولیدی طراحی شده است که برای استان کرمان مورد استفاده قرار گرفته است. اطلاعات استفاده شده مربوط به دوره زمانی 1386-1374 می باشد. نتایج پژوهش نشان می دهد که مدل ANN از دو روش آماری دیگر دقت بالاتری در پیش بینی دارد. همچنین مدل ANN نشان داد که هیچ کدام از این شرکت های تولیدی در سال بعد از دوره مورد بررسی، ورشکسته نخواهند شد.
۴.

پیش بینی نرخ تورم در اقتصاد ایران با استفاده از شبکه های عصبی مصنوعی پویا (دیدگاه سری زمانی)

کلید واژه ها: نرخ تورم شبکه های عصبی مصنوعی پویا پیش بینی نظریه اقتصاد منطقه ای

حوزه های تخصصی:
  1. حوزه‌های تخصصی اقتصاد اقتصاد کلان و اقتصاد پولی قیمت ها،نوسانات تجاری،دورهای تجاری سطح عمومی قیمت ها،تورم
  2. حوزه‌های تخصصی اقتصاد روش های ریاضی و کمی روش های آماری و اقتصادسنجی:موضوعات خاص شبکه های عصبی و موضوعات مربوطه
تعداد بازدید : ۳۵۱۳ تعداد دانلود : ۱۵۰۴
پیش بینی روند تورم برای تنظیم سیاست اقتصادی از اهمیت به سزایی برخوردار است. این نیاز موجب توجه جدی به کاربرد مدل های مختلف برای پیش بینی نرخ تورم شده است؛ و بدین منظور مدل های پیش بینی گوناگونی در رقابت با یکدیگر توسعه یافته اند. در این مقاله شبکه های عصبی مصنوعی پویا برای پیش بینی نرخ تورم به صورت شبکه های چند لایه و با استفاده از داده های متغیرهای مورد نیاز طی دوره 86-1338 و بر اساس دیدگاه تورم سری زمانی به کمک الگوریتم های مختلفی از روش آموزش پس انتشار خطا طراحی شده اند. ارزیابی شبکه های طراحی شده برای تعیین بهترین شبکه، بر مبنای مقدار خطای پیش بینی انجام گردیده است. یافته های تحقیق نشان داد که بهترین شبکه ها، شبکه هایی هستند که با الگوریتم یادگیری لونبرگ - مارکوارت آموزش داده شوند؛ توابع فعال ساز لایه میانی آنها غیر خطی و توابع فعال ساز لایه ی خروجی آنها خطی باشد و تعداد نرون های هر لایه آنها به صورت بهینه انتخاب شود. با توجه به این شبکه، نرخ تورم در دوره 91-1387 از 21.99 تا 10.59 درصد پیش بینی می شود
۵.

ارزیابی روش های پیش بینی ترکیبی : با رویکرد شبکه های عصبی - کلاسیک در حوزه اقتصاد

کلید واژه ها: شبکه های عصبی مصنوعی رگرسیون چند متغیره پیش بینى سریهای زمانى پیش بینى ترکیبی

حوزه های تخصصی:
تعداد بازدید : ۳۴۴۴ تعداد دانلود : ۱۸۳۱
در إین مقاله با استفاده از اطلاعات سرى زمانى قیمت و بازده سهام چند شرکت در بازار بورس تهران، به پیش بینى قیمت سهام و نیر ارائه مدل بهینه پرداخته مى شود. روشهاى پیش بینى مورد استفاده در تحقیق، به سه دسته تقسیم شده اند: ر و شهاى پیش بینى براساس مدلهاى خطى (کوتاه مدت و بلندمدت)، روشهاى پیش بینى براساس مدلهاى غیرخطى (شبکه هاى عصبى غیرخطى) و مدل شبکه عصبى با ساختار پیشنهادى. در هر مورد نتایج به دست آمده رسم شده اند. با استفاده از پیش پردازش هاى اشاره شده، نشان داده مى شودکه قیمت و بازده سهام (در هر 6 سهم مربوط به صنابع مختلف) از نگاشهاى پیچیده غیر خطى و آشوبگرانه به وجود آمده اند و اساسآ استفاده از انواع مختلف روشهاى خطى صحیح نمى باشد. همچنین نشان داده مى شودکه استفاده از روشهاى غیرخطى شبکه هاى عصبى به خودى خود و به شکل متعارف بهبود قابل ملاحظه اى را به دنبال ندارد. با ارائه پیشنهاد ساختار جدید، مى توان قیمت و بازده را به خوبى در دو حالت پیش بینى روز بعد و پیش بینى سى روز بعد تخمین زد.
۶.

رتبه بندی اعتباری مشتریان حقوقی بانک پارسیان

کلید واژه ها: اعتبارسنجی شبکه عصبی GMDH ریسک اعتباری رگرسیون لاجیت و پروبیت

حوزه های تخصصی:
تعداد بازدید : ۳۴۱۶ تعداد دانلود : ۱۶۴۵
این مقاله با هدف مدلسازی سنجش ریسک اعتباری و اعتبارسنجی مشتریان در بانک پارسیان به روش رگرسیون لاجیت و پروبیت و مدل شبکه های عصبی هوشمند GMDH انجام می شود. بدین منظور اطلاعات و داده های مالی و کیفی یک نمونه تصادفی 400 تایی از مشتریان که تسهیلات دریافت نموده اند مورد بررسی قرار می گیرد. این حجم نمونه از مشتریان دارای حساب منتهی به سال 1388 انتخاب شده اند. در این مقاله پس از بررسی پرونده های اعتباری هر یک از مشتریان، 11 متغیر توضیح دهنده مورد ارزیابی قرار می گیرد. نتایج مقاله ضمن دلالت بر تایید نظریه های اقتصادی و مالی نشان می دهد که عملکرد پیش بینی الگوی شبکه عصبی (درصد پیش بینی های صحیح آن) به مراتب بهتر از الگوهای اقتصادسنجی متعارف لاجیت و پروبیت است و در زمینه عوامل موثر بر ریسک اعتباری نشان می دهد که از بین متغیرهای مذکور، نوع وثیقه و نسبت بدهی دارای بیشترین اثر بر متغیر احتمال نکول می باشند. همچنین سابقه همکاری، نسبت جاری، نسبت آنی و نسبت مالکانه دارای اثر معمولی و سایر متغیرها کم اثر هستند
۷.

بـهبود عملکرد پیش بیـنی های مالـی با ترکیـب مدلهـای خـطی و غیـرخـطی خودرگرسیون میانگین متحرک انباشته و شبکه های عصبی مصنوعی

کلید واژه ها: کلیدواژگان: بازارهای مالی؛ شبکه های عصبی مصنوعی (ANNs)؛ مدل های ترکیبی؛ مدلهای خودرگرسیون میانگین متحرک انباشته (ARIMA)؛ پیش بینی نرخ ارز

حوزه های تخصصی:
تعداد بازدید : ۲۹۹۷ تعداد دانلود : ۱۳۳۱
دقت پیش بینی از مهمترین عوامل مؤثر در انتخاب روش پیش بینی است. امروزه به رغم وجود روشهای متعدد پیش بینی، هنوز پیش بینی دقیق مالی کار چندان ساده ای نبوده و اکثر محققان درصدد بکارگیری و ترکیب روشهای متفاوت به منظور حصول نتایج دقیق تر می باشند. در حالت کلی انتخاب مؤثرترین روش به منظور پیش بینی، کار بسیار دشواری می باشد. بسیاری از محققان روشهای خطی و غیرخطی را به منظور حصول نتایج دقیق تر با یکدیگر ترکیب کرده اند چرا که اولاً در عمل تعیین خطی و غیرخطی بودن یک سری زمانی کار دشواری است ثانیاً سریهای زمانی دنیای واقع بندرت کاملاً خطی و یا غیرخطی هستند. مدلهای خودرگرسیون میانگین متحرک انباشته (ARIMA) و شبکه های عصبی مصنوعی(ANNs) به ترتیب از جمله دقیق ترین مدلهای خطی و غیرخطی در پیش بینی سریهای زمانی می باشند. در این مقاله به منظور بهره گیری از مزایای منحصر به فرد هر یک از روشهای مدل سازی خطی و غیرخطی و حصول نتایج دقیقتر، روش ترکیبی مدل های خودرگرسیون میانگین متحرک انباشتهو شبکه های عصبی مصنوعی به منظور پیش بینی های مالی پیشنهاد شده اند. مقایسه نتایج حاصله بیانگر آنست که مدل تلفیقی نسبت به مدلهای اریما (ARIMA) و شبکه های پرسپترون چندلایه (MLP) نتایج دقیقتری در پیش بینی نرخ ارز(یورو در مقابل ریال) ارائه نموده است.
۸.

کاربرد الگوریتم ژنتیک در ترکیب پیش بینی های تورم ١

نویسنده:

کلید واژه ها: الگوریتم ژنتیک بهینه یابی ترکیب پیش‎بینی ها

حوزه های تخصصی:
تعداد بازدید : ۲۹۸۸ تعداد دانلود : ۱۳۶۳
پیش‎بینی تورم به عنوان یکی از الزامات سیاست‎گذاری پولی در کشورهایی تبدیل شده است که مقامات پولی آن‎ها سیاست هدف‎گذاری تورم را تعقیب می کنند. چرا که به واسطه استقلال بانک مرکزی از سویی و واگذاری سیاست‎گذاری پولی به این نهاد و از سویی دیگر به واسطه این‎که به‎طور عمده سیاست‎گذاری پولی با وقفه بر روی تورم تاثیرگذار است، لذا مقام پولی می‎بایستی تصویر مناسبی نسبت به تورم آینده داشته باشد، تا با سیاست‎گذاری از قبل بتواند در مسیر هدف‎گذاری انجام رفته حرکت کند. در این بین، به‎واسطه محدودیت‎هایی که مدل‎های منفرد پیش‎بینی تورم به همراه دارند، از مدل‎های مختلفی در پیش‎بینی تورم استفاده می‎شود، که هر یک از جهاتی نسبت به دیگر مدل‎ها دارای نقاط قوت و ضعفی هستند. یکی از راه های استفاده از تمامی اطلاعات موجود در پیش بینی تورم، ترکیب مدل‎های مختلف پیش بینی است، که در گزارش حاضر از رویکرد ابتکاری الگوریتم ژنتیک، به منظور ترکیب نتایج پیش بینی تورم شش مدل برای چهار فصل سال 1386 استفاده شده است.
۹.

کاربرد شبکه های عصبی مصنوعی در زمان بندی معاملات سهام: با رویکرد تحلیل تکنیکی

کلید واژه ها: کلیدواژگان: شبکه های عصبی مصنوعی؛ تحلیل تکنیکی؛ روش خرید و نگهداری؛ زمان بندی معاملات سهام؛ شاخصهای تکنیکی

حوزه های تخصصی:
تعداد بازدید : ۲۹۷۷ تعداد دانلود : ۱۴۲۲
زمانبندی معاملات سهام مساله ای بسیار مهم و مشکل به دلیل پیچیدگی بازار سهام است. آنچه اهمیت دارد پیش بینی روند قیمت سهام است که هدف اصلی در مباحث تحلیل تکنیکی است. گرچه این امر به دلیل دخالت عوامل متعدد بازار و روابط بین آنها چندان آسان نیست. به نظر می رسد استفاده از ابزارها و الگوریتمهای محاسباتی پیچیده تر مانند شبکه های عصبی مصنوعی در مدلسازی فرآیندهای غیر خطی که منتج به قیمت و روند سهام می شوند، می تواند بسیار مفید باشد. در این پژوهش قابلیت شبکه های عصبی مصنوعی (ANN) برای ارتقای اثربخشی شاخصهای تحلیل تکنیکی در پیش بینی علائم روند قیمت سهام بررسی شده است. نتایج حاصل از مدلها، بر اساس نمونه ای شامل 50 شرکت از شرکتهای پذیرفته شده در بورس اوراق بهادار تهران، نشان داد که شبکه های عصبی مصنوعی از قابلیت پیش بینی علائم تغییر روند کوتاه مدت قیمت سهام در بازار اوراق بهادار تهران برخوردار است. در بازار صعودی پس از کسر هزینه های معاملاتی، تفاوت معنی داری بین بازده مدل شبکه های عصبی مصنوعی، روش خرید و نگهداری و پربازده ترین شاخصهای تکنیکی وجود ندارد. اما در بازار نزولی بازده مدل شبکه های عصبی مصنوعی از بازده روش خرید و نگهداری بیشتر است، هر چند در بازار نزولی شاخصهای روند (میانگین متحرک) بیشترین بازده را کسب نمودند.
۱۰.

مطالعه تطبیقی روش های خطی ARIMA و غیر خطی شبکه های عصبی فازی در پیش بینی تقاضای اشتراک گاز شهری

کلید واژه ها: پیش بینی منطق فازی تقاضا شبکه های عصبی روش های غیر خطی گاز شهری

حوزه های تخصصی:
تعداد بازدید : ۲۸۱۹ تعداد دانلود : ۱۳۰۹
اطلاع از میزان تقاضای موجود در هر دوره یکی از مباحثی است که شرکت ملی گاز در راه پاسخگویی به مراجعان به آن نیاز دارد. عدم اطلاع از میزان تقاضای اشتراک سبب ایجاد مشکلاتی مانند عدم آگاهی از تعداد پیمانکاران مورد نیاز و همچنین فقدان برنامه کنترل موجودی مناسب برای انواع کنتورهای مورد نیاز و دیگر عوامل مرتبط می شود. در چند دهه گذشته، اقتصاددانان و علمای مدیریت برای برآورد تقاضا اغلب از روش های اقتصادسنجی استفاده کرده اند. امروزه از بین روش های پیش بینی، شبکه های عصبی مصنوعی و مدل های فازی در بسیاری از زمینه های کاربردی استفاده شده اند که هر کدام از آنها دارای محاسن و معایبی هستند. بنابراین، ترکیب موفقیت آمیز این دو روش، مدل سازی شبکه های عصبی مصنوعی و فازی، با اتکا به ترکیب قدرت یادگیری شبکه های عصبی و عملکرد منطقی سیستم های فازی تبدیل به ابزار بسیار قدرتمندی شده که هم اکنون کاربردهای گوناگونی دارند. در این تحقیق، تقاضای اشتراک گاز شهری خانگی شهر تهران با استفاده از روش خطی ARIMA و روش غیرخطی شبکه های عصبی فازی بررسی شده و از لحاظ شش معیار ارزیابی عملکرد با یکدیگر مقایسه شده اند. نتایج تحقیق بیان گر این حقیقت است که برای پیش بینی تقاضای اشتراک گاز شهری، شبکه های عصبی فازی در تمامی شش معیار ارزیابی عملکرد، بر روش ARIMA برتری داشته، بنابراین مناسب تر است.
۱۱.

استفاده از تحلیل پوششی داده های پنجره ای برای تحلیل ساختار و روند کارایی شرکت های توزیع برق ایران

حوزه های تخصصی:
تعداد بازدید : ۲۴۸۶ تعداد دانلود : ۱۱۱۹
روند کارایی شرکت های توزیع برق ایران از طریق تحلیل پوششی داده های پنجره ای بعد از جداسازی عمودی و تغییر مالکیت آن ها به عنوان یک موضوع مهم در این مقاله بررسی میشود و عوامل محیطی و ساختاری موثر بر کارایی مورد مطالعه قرار می گیرند. بر حسب چگالی مدار، شرکت ها به دو گروه دارای چگالی مدار پایین (گروه1) و بالا (گروه2) تقسیم بندی شده اند. با توجه به نتایج تحقیق، میانگین کارایی پنجره ای گروه های1 و2 با توجه به فرامرز تحت هر دو فرض بازدهی ثابت و متغیر نسبت به مقیاس به ترتیب روند صعودی و نزولی داشته است. با این وجود میانگین کارایی پنجره ای شرکت های گروه 2 در همه پنجره ها بالاتر از گروه 1 بوده است. شرکت های توزیع برق شهرستان شیراز،گلستان ومازندران در گروه 2 عملکرد نامناسبی با توجه به فرامرز و مرز گروهی داشته اند. عملکرد شرکت های دارای چگالی مدار بالاتر شکاف کم تری با عملکرد بالقوه برتر فرامرز دارد. افزایش ضریب بار شبکه باعث کاهش کارایی و افزایش ضریب بار ترانسفورماتور باعث افزایش کارایی در بلندمدت میشود. خصوصیسازی در کوتاه مدت دارای اثر معنیداری بر کارایی نبوده است اما در بلندمدت اثر مثبت معنیداری دارد.
۱۲.

برآورد بازارکار با استفاده از شبکه عصبی فازی

کلید واژه ها: اعداد فازی رگرسیون فازی بازارکار شبکه عصبی فازی

حوزه های تخصصی:
  1. حوزه‌های تخصصی اقتصاد اقتصاد خرد اقتصاد جمعیت و اقتصاد کار عرضه و تقاضای کار نیروی کار و اشتغال،اندازه و ساختار
  2. حوزه‌های تخصصی اقتصاد روش های ریاضی و کمی روش های آماری و اقتصادسنجی:موضوعات خاص شبکه های عصبی و موضوعات مربوطه
تعداد بازدید : ۲۳۲۵ تعداد دانلود : ۱۰۹۸
در این مقاله یک روش جدید بر اساس شبکه عصبی فازی برای برآورد ضرایب فازی یک تابع عرضه و تقاضای نیروی کار با ورودی ها و خروجی های فازی، ارایه می شود. در بازارکار میزان دستمزد افراد و تولید ناخالص داخلی به صورت کلمات مبهم و یا فازی می باشند بنابراین لازم است این داده ها توسط رگرسیون فازی برآورد گردند و ضرایب این رگرسیون توسط شبکه عصبی فازی صورت می گیرد. برای تقریب پارامتر ها، یک الگوریتم درنظر گرفته می شود که این کار توسط شبکه عصبی صورت می پذیرد. در انتها به بررسی و براورد تابع عرضه و تقاضای فازی بازارکار ایران می پردازیم. همچنین توانایی روش مذکور را با روش های موجود مورد بررسی قرار خواهیم داد و مشخص شد که توانایی پیش بینی این روش از روش کاو و تاناکا برتری دارد.
۱۳.

کاربرد سیستم های استدلال عصبی- فازی در رتبه بندی اعتباری مشتریان حقوقی بانکها

کلید واژه ها: رتبه بندی اعتباری درجهی تشخیص سیستم استدلال عصبی فازی سازگار

حوزه های تخصصی:
تعداد بازدید : ۲۱۹۲ تعداد دانلود : ۱۰۰۶
امروزه ریسک اعتباری به عنوان یکی از بزرگ ترین عوامل ورشکستگی بانکها و مؤسسات مالی شناخته شده است. به منظور مدیریت و کنترل این ریسک طراحی مدل های رتبه بندی اعتباری در بانکها ضرورتی انکار ناپذیر است. رتبه بندی اعتباری به منظور تعیین احتمال نکول در بازپرداخت تسهیلات اعتباری و از سوی دیگر برای طبقه بندی مشتریان متقاضی تسهیلات اعتباری به دو گروه خوش حساب و بد حساب مورد استفاده قرار میگیرد. تا به حال روش های آماری مختلفی از جمله آنالیز ممیزی، رگرسیون خطی و لجستیک و شبکه های عصبی در زمینه رتبه بندی اعتباری توسعه یافته اند. در این میان، شبکه های عصبی به دلیل انعطاف پذیری و دقت بالا، در سال های اخیر بیش تر مورد توجه قرار گرفته اند. در این مقاله یک مدل رتبه بندی اعتباری با استفاده از سیستم های استدلال عصبی- فازی جهت رتبه بندی مشتریان حقوقی بانکها ارائه شده است. متغیرهای ورودی این مدل نسبت بدهی، نسبت فعالیت و نسبت ارزش ویژه به مجموع دارایی ها و متغیر خروجی آن احتمال نکول مشتری، در نظر گرفته شده است. پس از آموزش و تست مدل بر اساس داده های بانک کشاورزی طی سال های 1380-1385، مدل ارائه شده با دقت 36/69 درصد وضعیت اعتباری مشتریان را پیش بینی می کند.
۱۴.

پیش بینی قیمت آمونیاک با رویکرد تحلیل های بنیادین، تکنیکی و شبکه عصبی

کلید واژه ها: پیش بینی تحلیل تکنیکی شبکه عصبی GMDH قیمت آمونیاک قیمت گاز طبیعی تحلیل بنیادین

حوزه های تخصصی:
  1. حوزه‌های تخصصی اقتصاد اقتصاد بخشی،اقتصاد صنعتی،کشاورزی،انرژی،منابع طبیعی،محیط زیست اقتصاد صنعتی ساختار بازار،استراتژِ بنگاه و عملکرد بازار تولید،قیمت گذاری و ساختار بازار،توزیع سایز بنگاه ها در بازار
  2. حوزه‌های تخصصی اقتصاد روش های ریاضی و کمی روش های آماری و اقتصادسنجی:موضوعات خاص شبکه های عصبی و موضوعات مربوطه
تعداد بازدید : ۲۱۳۶ تعداد دانلود : ۱۰۳۳
با توجه به اهمیت پیش بینی در حوزه مسایل مالی و اقتصادی محققان همواره در تلاشند که از روش های دقیق تری در این زمینه بهره بگیرند تا به درک نسبی بهتری از وضعیت آینده بازار دست یافته، از نااطمینانی ها بکاهند. در این مقاله از شبکه عصبی GMDH مبتنی بر الگوریتم ژنتیک به عنوان ابزاری با قابلیت بالا در مدل سازی سیستم های غیر خطی پویای پیچیده، برای پیش بینی قیمت آمونیاک استفاده شده است. برای اتنخاب متغیرهای اثرگذار بر قیمت آمونیاک از دو روش تحلیل بنیادین و تکنیکی استفاده شده است. روش تحلیل بنیادین با تکیه بر تئوری عرضه و تقاضا و نگرش کلان اقتصادی، همه عوامل اثرگذار احتمالی بر قیمت را برای مدل سازی و پیش بینی قیمت به محقق پیشنهاد می کند، سپس با تکیه بر توانایی الگوریتم GMDH در شناسایی متغیرهای زاید، از میان همه عوامل اثرگذار احتمالی تنها از عناصر اثرگذارتر بر قیمت آمونیاک استفاده شده است تا پیش بینی های دقیق تر و بدون تورشی ارایه شود. دقت پیش بینی های انجام شده در بازه مورد بررسی بیش از 99 درصد است. در روش تحلیل تکنیکی، پیش بینی ها با تکیه بر رفتار گذشته قیمت در همان بازار (در اینجا آمونیاک خاورمیانه) نتایج دقیقی را به دست داده است. برتری شبکه عصبی GMDH در دقت پیش بینی قیمت آمونیاک نسبت به روش ARIMA در بخش پایانی مورد تایید قرار گرفته است.
۱۵.

پیش بینی ورشکستگی شرکت های تولیدی با استفاده از شبکه های عصبی مصنوعی (مطالعه موردی: شرکت های تولیدی استان کرمان)

کلید واژه ها: ایران پیش بینی شبکه عصبی مصنوعی شرکت های تولیدی ورشکستگی

حوزه های تخصصی:
  1. حوزه‌های تخصصی اقتصاد اقتصاد مالی حاکمیت و مالیه شرکتی ورشکستگی،انحلال
  2. حوزه‌های تخصصی اقتصاد روش های ریاضی و کمی روش های آماری و اقتصادسنجی:موضوعات خاص شبکه های عصبی و موضوعات مربوطه
تعداد بازدید : ۲۱۲۰ تعداد دانلود : ۱۱۴۲
یکی از مهم ترین موضوع های مطرح شده در مدیریت مالی، تشخیص فرصت های مطلوب سرمایه گذاری توسط سرمایه گذاران از فرصت های نامطلوب است. یکی از راه هایی که می توان با استفاده از آن به بهره گیری مناسب از فرصت های سرمایه گذاری و همچنین جلوگیری از به هدر رفتن منابع کمک کرد، پیش بینی ورشکستگی شرکت ها است. برای این منظور مدل های مختلفی وجود دارد. در این پژوهش جهت پیش بینی ورشکستگی شرکت های تولیدی استان کرمان، از مدل شبکه های عصبی استفاده شده است.
۱۶.

کاربرد مدلهای شبکه عصبی در پیش بینی ورشکستگی اقتصادی شرکتهای بازار بورس

کلید واژه ها: ورشکستگی پرسپترون مدلهای پیش بینی ورشکستگی مدل شبکه عصبی

حوزه های تخصصی:
  1. حوزه‌های تخصصی اقتصاد اقتصاد مالی حاکمیت و مالیه شرکتی ورشکستگی،انحلال
  2. حوزه‌های تخصصی اقتصاد روش های ریاضی و کمی روش های آماری و اقتصادسنجی:موضوعات خاص شبکه های عصبی و موضوعات مربوطه
تعداد بازدید : ۲۰۵۱ تعداد دانلود : ۷۸۴۷
یکی از پیشرفته ترین مدلهای پیش بینی کننده ورشکستگی، مدل «شبکه عصبی مصنوعی» است. مطابق نتایج تحقیق ساختار اصلی پرسپترون سه و چهار لایه برای پیش بینی ورشکستگی شرکتها به مدلهایی شبیه یکدیگر منتهی می شود که در این میان شبکه سه لایه از قدرت پیش بینی بیشتری نسبت به شبکه چهار لایه برخوردار است. این تحقیق نشان می دهد که «به کارگیری مدلهای مبتنی بر شبکه عصبی توانایی مدیریتهای مالی را برای مقابله با نوسانهای اقتصادی و ورشکستگی نسبت به مدلهای رقیب افزایش می دهد». پیش بینی ورشکستگی اقتصادی شرکتهای بازار بورس در سالهای 1385 و 1386 و ترسیم روند ورشکستگی این شرکتها در دورة 1369- 1386 از دیگر بخشهای این مقاله است. نتایج نشان می دهد که در سال 1385 تحت تأثیر سیاستهای شفاف سازی روند ورشکستگی اقتصادی شرکتها به طور چشمگیری افزایش خواهد یافت که با سازگارشدن شرکتها با شرایط جدید، تا حدی این روند در سال 1386 تعدیل می شود.
۱۷.

بررسی مقایسه ای توان شبکه های عصبی با ورودی شاخص های تحلیل تکنیکی برای پیش بینی قیمت سهام

حوزه های تخصصی:
تعداد بازدید : ۲۰۴۹
مهمترین مساله برای سرمایه گذاران فعال در بازار سرمایه، پیش بینی قیمت سهام می باشد. هدف اصلی این مطالعه نیز بررسی کاربردپذیری پیش بینی قیمت سهام به وسیله شاخص های تحلیل تکنیکی با استفاده از شبکه های عصبی و مقایسه این روش با سایر روش های پیش بینی از جمله شبکه عصبی استفاده کننده از قیمت سهام و مدل های ARIMA می باشد. در این تحقیق قیمت سهام ده روز آینده چهل شرکت فعال در بورس اوراق بهادار تهران با استفاده از سه روش مختلف پیش بینی می شود. در روش اول با استفاده از یک شبکه عصبی پیش خور تک لایه با الگوریتم یادگیری لونبرگ - مارکوات و معیار عملکرد میانگین مربعات خطا با ورودی ارزش بازار، قیمت پیش بینی می شود. سپس علاوه بر ورودی ارزش بازار، میانگین های متحرک پنج، ده و بیست روزه و ROC و RSI دوازده روزه نیز به عنوان ورودی به شبکه معرفی گردید و پیش بینی صورت گرفت. قیمت سهام با استفاده از مدل های ARIMA نیز برای کلیه شرکت های پیش بینی شد. با استفاده از تحلیل واریانس سه روش مختلف پیش بینی با یکدیگر مقایسه گردیدند. از آنجا که در مورد سی شرکت پیش بینی قیمت توسط مدل های ARIMA به طور معنی داری نسبت به مدل های شبکه عصبی نتایج بهتری ارایه نموده است می توان اظهار داشت که مدل های خطی - ARIMA بهتر از مدل های غیر خطی، شبکه های عصبی - توانسته اند پیچیدگی های سری های زمانی قیمت سهام را تجزیه و تحلیل نموده و برای پیش بینی قیمت سهام مورد استفاده قرار گیرند.
۱۸.

بهبود مدل سازی شبکه های عصبی در پیش بینی نرخ ارز، با به کارگیری شاخص های تلاطم

کلید واژه ها: نرخ ارز پیش بینی شبکه عصبی شاخص تلاطم

حوزه های تخصصی:
تعداد بازدید : ۱۹۶۵ تعداد دانلود : ۸۸۷
این مقاله بر نقش شاخص های تلاطم در بهبود روش شبکه های عصبی برای پیش بینی روزانه دو نرخ ارز دلار و پوند در برابر یورو در بازار ارز تاکید دارد. بدین منظور دو شاخص واریانس و گارچ را به عنوان شاخص های تلاطم نرخ ارز به تفکیک در نظر گرفته و به دو طریق در مدل مورد استفاده قرار می دهیم. بار اول وقفه آن را به وقفه های نرخ ارز اضافه می کنیم و بار دیگر شاخص تلاطم را سطح بندی کرده و با دسته بندی مشاهدات براساس سطح تلاطم، مدل پیش بینی ویژه ای را برای هر دسته از مشاهدات می سازیم. نتایج نشان می دهد که مدل های سطوح بالای تلاطم، در مقایسه با مدل مبنا، قدرت پیش بینی نرخ ارز آتی را بهبود می دهند، اما در پیش بینی مدل های سطوح میانی و پایین تلاطم، بهبودی مشاهده نمی شود. بنابراین می توان گفت که در بازار ارز، تلاطم های پایین نرخ ارز برای عاملان اقتصادی خبر جدیدی نیست و در شکل دادن انتظارات برای پیش بینی نرخ ارز نقشی ندارد، در حالی که سطوح بالاتر تلاطم یک اطلاع جدید است.
۱۹.

مقایسهی عملکرد شبکه های عصبی و مدلARIMA در مدل سازی و پیش بینی کوتاه مدت قیمت سبد نفت خام اوپک (با تاکید بر انتظارات تطبیقی)

کلید واژه ها: پیش بینی شبکه های عصبی انتظارات تطبیقی ARIMA قیمت سبد نفت خام اوپک

حوزه های تخصصی:
  1. حوزه‌های تخصصی اقتصاد اقتصاد بخشی،اقتصاد صنعتی،کشاورزی،انرژی،منابع طبیعی،محیط زیست اقتصاد انرژی نفت،گاز طبیعی،زغال سنگ،مشتقات نفتی اوپک،ساختار،سهمیه بندی،قیمت گذاری
  2. حوزه‌های تخصصی اقتصاد روش های ریاضی و کمی روش های آماری و اقتصادسنجی:موضوعات خاص شبکه های عصبی و موضوعات مربوطه
تعداد بازدید : ۱۷۱۹ تعداد دانلود : ۱۰۵۲
امروزه نفت به عنوان یکی از منابع مورد استفادهی بشر، از اهمیت ویژه ای برخوردار است. قیمت نفت به دلیل اهمیت آن در بازارهای بین المللی، رابطهی اساسی با اقتصاد کشورها و موقعیت استراتژیک آن در بین کالاهای اقتصادی، به عنوان یکی از عوامل مؤثر در اقتصاد بین الملل، نقش تعیین کننده ای دارد. شناخت ساختار قیمت این کالا و مدل سازی آن همواره مورد توجه پژوهش های اقتصادی بوده و تلاش هایی نیز برای بررسی علت نوسان و پیش بینی آن انجام گرفته است. در این راستا، شبکه های عصبی مصنوعی از قابلیت بالایی در مدل سازی فرایندهای تصادفی و پیچیده و پیش بینی مسیرهای غیرخطی پویا برخوردار هستند. در این مقاله، با استفاده از شبکه ی عصبی مصنوعی مبتنی بر انتظارات قیمتی برای داده های روزانه، به مدل سازی و پیش بینی روزانهی قیمت سبد نفت خام اوپک پرداخته شده و نتایج آن با مقادیر پیش بینی شده توسط مدل ARIMA براساس معیارهای اندازه گیری دقت پیش بینی، مورد مقایسه قرار گرفته است. نتایج تحقیق نشان می دهد که شبکهی عصبی مورد استفاده، نسبت به مدل ARIMA از قدرت پیش بینی بهتری برخوردار است و قیمت نفت خام تابعی از قیمت های 5 روز گذشتهی خود می باشد.
۲۰.

ارزیابی عملکرد الگوهای شبکهی عصبی و خودرگرسیون میانگین متحرک در پیش بینی قیمت نفت خام ایران

کلید واژه ها: قیمت پیش بینی نفت خام ایران شبکهی عصبی مصنوعی خودرگرسیون میانگین متحرک

حوزه های تخصصی:
  1. حوزه‌های تخصصی اقتصاد اقتصاد بخشی،اقتصاد صنعتی،کشاورزی،انرژی،منابع طبیعی،محیط زیست اقتصاد انرژی نفت،گاز طبیعی،زغال سنگ،مشتقات نفتی پیش بینی قیمت،نوسانات قیمتی،عدم ثبات،نااطمینانی و ریسک
  2. حوزه‌های تخصصی اقتصاد روش های ریاضی و کمی روش های آماری و اقتصادسنجی:موضوعات خاص شبکه های عصبی و موضوعات مربوطه
تعداد بازدید : ۱۵۷۹ تعداد دانلود : ۷۶۶
این مطالعه با هدف معرفی الگوهای مطلوب پیش بینی برای قیمت نفت خام ایران انجام شده است داده های مورد استفاده به صورت هفتگی و شامل دورهی 2010-1997 میباشد و پیش بینی ها برای 10، 20 و 30 درصد داده های یاد شده انجام گرفته است. الگوهای مورد استفاده برای پیش بینی، شامل 4 الگوی شبکهی عصبی و یک الگوی رگرسیونی (خودرگرسیون میانگین متحرک) بوده است. شبکه های منتخب شامل شبکهی پیشخور پس انتشار، شبکهی آبشاری پس انتشار، شبکهی المان پس انتشار و شبکهی رگرسیون تعمیم یافته می باشد. هم چنین توابع آموزش مورد استفاده در پیش بینی شامل توابع لونبرگ- مارکوآت و شبهی نیوتنی است. یافته های به دست آمده نشان میدهد برای پیش بینی 10 درصد از داده های قیمت نفت خام، الگوهای شبکهی رگرسیون تعمیم یافته و شبکهی آبشاری پس انتشار با تابع آموزش شبهی نیوتنی، به ترتیب با خطایی کم تر از 1 و کم تر از 2 درصد دارای بهترین عملکرد هستند. برای پیش بینی 20 درصد داده های قیمت نفت خام ایران، شبکهی پیشخور پس انتشار و شبکهی المان پس انتشار با تابع آموزش لونبرگ- مارکوآت، دارای عملکرد بهتر میباشند. در مورد 30 درصد از داده ها نیز شبکهی پیشخور پس انتشار مطلوب تر ارزیابی شده است. هم چنین نتایج نشان میدهد به طور نسبی با افزایش درصد داده های مورد استفاده در پیش بینی، دقت پیش بینیها به ویژه با افزایش از 10 درصد به 20 درصد رو به افول میرود. دقت پیش بینی خودرگرسیون میانگین متحرک نیز پایین تر از الگوهای شبکهی عصبی ارزیابی میشود.

پالایش نتایج جستجو

تعداد نتایج در یک صفحه:

درجه علمی

مجله

سال

زبان