مطالب مرتبط با کلید واژه " شبکه عصبی GMDH "


۱.

مدل سازی و پیش بینی قیمت بنزین با استفاده از شبکه عصبی GMDH

کلید واژه ها: پیش بینیالگوریتم ژنتیکتحلیل تکنیکیمیانگین متحرکمدل سازیقیمت نفتشبکه عصبی GMDHقیمت بنزینروش قیاسی

حوزه های تخصصی:
تعداد بازدید : ۲۷۷۷ تعداد دانلود : ۱۲۳۵
در این پژوهش از شبکه عصبی GMDH مبتنی بر الگوریتم ژنتیک به عنوان ابزاری با قابلیت بالا در مدل سازی سیستم های غیرخطی پویای پیچیده، برای پیش بینی قیمت بنزین با دو روش قیاسی و قواعد تحلیل تکنیکی، استفاده کرده ایم. متغیرهای ورودی در روش قیاسی شامل تمام عوامل مؤثر(درون و برون سیستمی) بر قیمت بنزین و در روش تحلیل تکنیکی شامل میانگین های متحرک کوتاه و بلندمدت است. نتایج نشان دهنده دقت بیش از 96درصد پیش بینی و پایداری روش قیاسی و بیش از99درصد تحلیل تکنیکی است. اثر روز دوشنبه به عنوان یک معیار تحلیل تکنیکی در روش قیاسی، تایید شده است. همچنین، در مقایسه معیارهای خطا، دقت پیش بینی های شبکه عصبی GMDH به طور معناداری از الگوی رگرسیونی بهتر است.
۲.

محاسبه هوشمند حداکثر درآمد در بازار پیش خرید و پیش فروش نفت خام

کلید واژه ها: الگوریتم ژنتیکعایدیتحلیل تکنیکینفت خامشبکه عصبی GMDHبازار پیش خرید و پیش فروشبهینه سازی چند منظوره

حوزه های تخصصی:
تعداد بازدید : ۹۵۶ تعداد دانلود : ۴۵۶
در این مقاله، از رویکرد هوشمند تلفیقی، مشتمل بر نوعی از شبکه عصبی موسوم به GMDH و الگوریتم ژنتیک و بهینه سازی چند منظوره، برای تحلیل قیمت پیش خرید و پیش فروش نفت خام به منظور محاسبه حداکثر درآمد حاصل از پیش بینی در روندهای مختلف بازار مبتنی بر قواعد تحلیل تکنیکی استفاده شده است. نتایج نشان میدهد که در بازه زمانی 5 تا 10 روزه برای دوره های مختلف، بازار عایدی مطلق به 97% میرسد. هم چنین روند صعودی دارای بیش ترین عایدی و روند بیثباتی توام با تغییر، کم ترین عایدی را دارد.
۳.

پیش‎بینی تقاضای آب شهرتهران با استفاده از الگوهای ساختاری، سری‎های زمانی و شبکه عصبی نوع GMDH

کلید واژه ها: شبکه عصبی GMDHتقاضای آب شهر تهرانپیش‎بینی الگو‎های ساختاری و سری زمانی

حوزه های تخصصی:
تعداد بازدید : ۱۵۵۶ تعداد دانلود : ۷۴۴
روش‎ها و الگوهای اقتصاد سنجی متفاوتی، از قبیل تجزیه و تحلیل رگرسیون و سری‎های زمانی به منظور پیش‎بینی تقاضای آب، به‎طور معمول توسط محققان مختلف مورد استفاده قرار گرفته‎اند. اما در سال‎های اخیر تکنیک جدید شبکه‎های عصبی به عنوان ابزاری مؤثر و کارا در پیش‎بینی متغیرهای اقتصادی مطرح شده است. در مقاله حاضر، از شبکه عصبی نوع GMDH مبتنی برالگوریتم ژنتیک، الگوهای ساختاری و هم‎چنین سری‎های زمانی، به منظور مقایسه روش‎های پیش‎بینی تقاضای سرانه آب در شهر تهران استفاده شده است. متغیرهای مورد نظر در الگوهای پیش بینی تقاضای آب عبارتند از مصرف سرانه آب، قیمت آب، متوسط درآمد خانوار و متوسط درجه حرارت سالانه در شهر تهران. نتایج به‎دست آمده حاکی از آن است که پیش -بینی تقاضای آب با استفاده از روش شبکه‎های عصبی نوع GMDH، نسبت به برآوردهای حاصل از الگوهای ساختاری و سری زمانی، از درجه کارایی بیش‎تری برخوردار است. بنابراین، استفاده از شبک? عصبی مصنوعی در پیش بینی متغیرهای اقتصادی، می‎تواند به عنوان ابزاری در کنار سایر روش‎های پیش بینی مورد استفاده تصمیم‎گیران و سیاست‎گذاران در بخش مدیریت آب قرار گیرد.
۴.

پیش بینی قیمت آمونیاک با رویکرد تحلیل های بنیادین، تکنیکی و شبکه عصبی

کلید واژه ها: پیش بینیتحلیل تکنیکیشبکه عصبی GMDHقیمت آمونیاکقیمت گاز طبیعیتحلیل بنیادین

حوزه های تخصصی:
  1. حوزه‌های تخصصی اقتصاد اقتصاد بخشی،اقتصاد صنعتی،کشاورزی،انرژی،منابع طبیعی،محیط زیست اقتصاد صنعتی ساختار بازار،استراتژِ بنگاه و عملکرد بازار تولید،قیمت گذاری و ساختار بازار،توزیع سایز بنگاه ها در بازار
  2. حوزه‌های تخصصی اقتصاد روش های ریاضی و کمی روش های آماری و اقتصادسنجی:موضوعات خاص شبکه های عصبی و موضوعات مربوطه
تعداد بازدید : ۱۹۶۰ تعداد دانلود : ۹۲۹
با توجه به اهمیت پیش بینی در حوزه مسایل مالی و اقتصادی محققان همواره در تلاشند که از روش های دقیق تری در این زمینه بهره بگیرند تا به درک نسبی بهتری از وضعیت آینده بازار دست یافته، از نااطمینانی ها بکاهند. در این مقاله از شبکه عصبی GMDH مبتنی بر الگوریتم ژنتیک به عنوان ابزاری با قابلیت بالا در مدل سازی سیستم های غیر خطی پویای پیچیده، برای پیش بینی قیمت آمونیاک استفاده شده است. برای اتنخاب متغیرهای اثرگذار بر قیمت آمونیاک از دو روش تحلیل بنیادین و تکنیکی استفاده شده است. روش تحلیل بنیادین با تکیه بر تئوری عرضه و تقاضا و نگرش کلان اقتصادی، همه عوامل اثرگذار احتمالی بر قیمت را برای مدل سازی و پیش بینی قیمت به محقق پیشنهاد می کند، سپس با تکیه بر توانایی الگوریتم GMDH در شناسایی متغیرهای زاید، از میان همه عوامل اثرگذار احتمالی تنها از عناصر اثرگذارتر بر قیمت آمونیاک استفاده شده است تا پیش بینی های دقیق تر و بدون تورشی ارایه شود. دقت پیش بینی های انجام شده در بازه مورد بررسی بیش از 99 درصد است. در روش تحلیل تکنیکی، پیش بینی ها با تکیه بر رفتار گذشته قیمت در همان بازار (در اینجا آمونیاک خاورمیانه) نتایج دقیقی را به دست داده است. برتری شبکه عصبی GMDH در دقت پیش بینی قیمت آمونیاک نسبت به روش ARIMA در بخش پایانی مورد تایید قرار گرفته است.
۵.

رتبه بندی اعتباری مشتریان حقوقی بانک پارسیان

کلید واژه ها: اعتبارسنجیشبکه عصبی GMDHریسک اعتباریرگرسیون لاجیت و پروبیت

حوزه های تخصصی:
تعداد بازدید : ۳۲۱۴ تعداد دانلود : ۱۵۲۴
این مقاله با هدف مدلسازی سنجش ریسک اعتباری و اعتبارسنجی مشتریان در بانک پارسیان به روش رگرسیون لاجیت و پروبیت و مدل شبکه های عصبی هوشمند GMDH انجام می شود. بدین منظور اطلاعات و داده های مالی و کیفی یک نمونه تصادفی 400 تایی از مشتریان که تسهیلات دریافت نموده اند مورد بررسی قرار می گیرد. این حجم نمونه از مشتریان دارای حساب منتهی به سال 1388 انتخاب شده اند. در این مقاله پس از بررسی پرونده های اعتباری هر یک از مشتریان، 11 متغیر توضیح دهنده مورد ارزیابی قرار می گیرد. نتایج مقاله ضمن دلالت بر تایید نظریه های اقتصادی و مالی نشان می دهد که عملکرد پیش بینی الگوی شبکه عصبی (درصد پیش بینی های صحیح آن) به مراتب بهتر از الگوهای اقتصادسنجی متعارف لاجیت و پروبیت است و در زمینه عوامل موثر بر ریسک اعتباری نشان می دهد که از بین متغیرهای مذکور، نوع وثیقه و نسبت بدهی دارای بیشترین اثر بر متغیر احتمال نکول می باشند. همچنین سابقه همکاری، نسبت جاری، نسبت آنی و نسبت مالکانه دارای اثر معمولی و سایر متغیرها کم اثر هستند
۶.

اثرات جهانی شدن بر اشتغال و تقاضای نیروی کار ماهر و غیرماهر ایران

کلید واژه ها: اشتغالجهانی شدنشبکه عصبی GMDHشاخص جهانی شدنتقاضای نیروی کار ماهر و غیرماهر

حوزه های تخصصی:
تعداد بازدید : ۵۹۹ تعداد دانلود : ۲۴۲
در این مطالعه تلاش م یشود تا اثرات گوناگون جهانی شدن اقتصاد بر روی تقاضای کل نیروی کار و همچنین تقاضای نیروی کار ماهر و غیرماهر در ایران ارزیابی شود. بدین منظور در این مطالعه برای بررسی و پی شبینی اثرات جهان یشدن روی بازار کار در بازه زمانی 1353-85 از دو مدل ARDL و شبکه عصبی و نیز دو شاخص آزادسازی و سرمایه گذاری مستقیم خارجی به عنوان شاخ صهای جهانی شدن استفاده شده است. نتایج نشان م یدهد که اثر جهان یشدن بر تقاضای کل نیروی کار مثبت و معن یدار بوده و اثر جهانی شدن بر تقاضای نیروی کار ماهر بیشتر از تقاضای نیروی کار غیرماهر است. همچنین شبکه عصبی عملکرد بهتری در پیش بینی متغیر هدف نسبت به روش ARDL ، دارد
۷.

استفاده از رهیافت شبکه عصبی در پیش بینی مصرف انرژی خط یک متروی تهران

تعداد بازدید : ۶ تعداد دانلود : ۵
امروزه انرژی و میزان مصرف آن، محور استراتژیک برنامه ریزی های سازمانی است. گسترش سیستم حمل ونقل درون شهری بدون در نظر گرفتن شرایط گوناگون اقتصادی، علمی، صنعتی، آب و هوایی و رشد روزافزون شهرنشینی امکان ناپذیر است . تحلیل روندهای پیشین اطلاعات مصرف انرژی جهت پیش بینی روندهای آینده با درنظرگرفتن نرخ توسعه خطوط مترو، راه حلی کلیدی در راستای برنامه ریزی ها و سیاست گذاری های کلان آینده محور خواهد بود. در این پژوهش برای پیش بینی مصرف انرژی خط یک متروی تهران از مدل شبکه عصبی GMDH استفاده شده است که از قابلیت شناسایی و غربال کردن متغیرهای ورودی کم اثر در دوره آموزش شبکه و حذف آن ها در دوره آزمون، برخوردار می باشد و همچنین برای درک میزان دقت پیش بینی با مدل ARIMA مورد مقایسه قرارگرفته است. در این پژوهش، دوازده متغیر اثرگذار بر میزان مصرف انرژی متروی تهران شناسایی شده و به عنوان متغیرهای ورودی مدل در نظر گرفته شده است. نتایج حاکی از آن است که مدل شبکه عصبی GMDH ، به مراتب خطای کمتری را نسبت به مدل ARIMA دارد و از دقت پیش بینی بالاتری برخوردار است.