مجتبی الهامی نژاد

مجتبی الهامی نژاد

مطالب

فیلتر های جستجو: فیلتری انتخاب نشده است.
نمایش ۱ تا ۱ مورد از کل ۱ مورد.
۱.

مقایسهی عملکرد شبکه های عصبی و مدلARIMA در مدل سازی و پیش بینی کوتاه مدت قیمت سبد نفت خام اوپک (با تاکید بر انتظارات تطبیقی)

کلید واژه ها: پیش بینیشبکه های عصبیانتظارات تطبیقیARIMAقیمت سبد نفت خام اوپک

حوزه های تخصصی:
  1. حوزه‌های تخصصی اقتصاد اقتصاد بخشی،اقتصاد صنعتی،کشاورزی،انرژی،منابع طبیعی،محیط زیست اقتصاد انرژی نفت،گاز طبیعی،زغال سنگ،مشتقات نفتی اوپک،ساختار،سهمیه بندی،قیمت گذاری
  2. حوزه‌های تخصصی اقتصاد روش های ریاضی و کمی روش های آماری و اقتصادسنجی:موضوعات خاص شبکه های عصبی و موضوعات مربوطه
تعداد بازدید : ۱۵۱۴ تعداد دانلود : ۷۸۲
امروزه نفت به عنوان یکی از منابع مورد استفادهی بشر، از اهمیت ویژه ای برخوردار است. قیمت نفت به دلیل اهمیت آن در بازارهای بین المللی، رابطهی اساسی با اقتصاد کشورها و موقعیت استراتژیک آن در بین کالاهای اقتصادی، به عنوان یکی از عوامل مؤثر در اقتصاد بین الملل، نقش تعیین کننده ای دارد. شناخت ساختار قیمت این کالا و مدل سازی آن همواره مورد توجه پژوهش های اقتصادی بوده و تلاش هایی نیز برای بررسی علت نوسان و پیش بینی آن انجام گرفته است. در این راستا، شبکه های عصبی مصنوعی از قابلیت بالایی در مدل سازی فرایندهای تصادفی و پیچیده و پیش بینی مسیرهای غیرخطی پویا برخوردار هستند. در این مقاله، با استفاده از شبکه ی عصبی مصنوعی مبتنی بر انتظارات قیمتی برای داده های روزانه، به مدل سازی و پیش بینی روزانهی قیمت سبد نفت خام اوپک پرداخته شده و نتایج آن با مقادیر پیش بینی شده توسط مدل ARIMA براساس معیارهای اندازه گیری دقت پیش بینی، مورد مقایسه قرار گرفته است. نتایج تحقیق نشان می دهد که شبکهی عصبی مورد استفاده، نسبت به مدل ARIMA از قدرت پیش بینی بهتری برخوردار است و قیمت نفت خام تابعی از قیمت های 5 روز گذشتهی خود می باشد.

کلیدواژه‌های مرتبط

پدیدآورندگان همکار

تبلیغات

پالایش نتایج جستجو

تعداد نتایج در یک صفحه:

درجه علمی

مجله

سال

حوزه تخصصی

زبان