پیش بینی نرخ تورم در اقتصاد ایران با استفاده از شبکه های عصبی مصنوعی پویا (دیدگاه سری زمانی)(مقاله علمی وزارت علوم)
حوزه های تخصصی:
پیش بینی روند تورم برای تنظیم سیاست اقتصادی از اهمیت به سزایی برخوردار است. این نیاز موجب توجه جدی به کاربرد مدل های مختلف برای پیش بینی نرخ تورم شده است؛ و بدین منظور مدل های پیش بینی گوناگونی در رقابت با یکدیگر توسعه یافته اند. در این مقاله شبکه های عصبی مصنوعی پویا برای پیش بینی نرخ تورم به صورت شبکه های چند لایه و با استفاده از داده های متغیرهای مورد نیاز طی دوره 86-1338 و بر اساس دیدگاه تورم سری زمانی به کمک الگوریتم های مختلفی از روش آموزش پس انتشار خطا طراحی شده اند. ارزیابی شبکه های طراحی شده برای تعیین بهترین شبکه، بر مبنای مقدار خطای پیش بینی انجام گردیده است. یافته های تحقیق نشان داد که بهترین شبکه ها، شبکه هایی هستند که با الگوریتم یادگیری لونبرگ - مارکوارت آموزش داده شوند؛ توابع فعال ساز لایه میانی آنها غیر خطی و توابع فعال ساز لایه ی خروجی آنها خطی باشد و تعداد نرون های هر لایه آنها به صورت بهینه انتخاب شود. با توجه به این شبکه، نرخ تورم در دوره 91-1387 از 21.99 تا 10.59 درصد پیش بینی می شود