آرشیو

آرشیو شماره ها:
۴۹

چکیده

در کشورهای درحال توسعه، اکثر شهرهای بزرگ به طور فزاینده ای با آلودگی هوا به عنوان عاملی تأثیرگذار بر کیفیت زندگی و سلامت عمومی جامعه مواجه هستند. ناحیه کلان شهری تهران نیز به واسطه تراکم جمعیتی بالا یکی از مناطق مهم در ایران محسوب می گردد. صنایع آلاینده به همراه استفاده از وسایل نقلیه از جمله مهم ترین عواملی محسوب می گردد که موجب شده است تا این شهر به عنوان آلوده ترین کلان شهر کشور محسوب گردیده و متعاقباً لازم است تا در جهت کاهش آلودگی هوا در این شهر برنامه ریزی مؤثری انجام شود. یکی از مهم ترین اقدامات در زمینه کاهش آلودگی هوا، پیش بینی مقادیر غلظت آلاینده ها می باشد که می تواند تصمیم گیری و برنامه ریزی و ارائه راهکارهای مناسب را بهبود بخشد. ازآنجایی که نیاز به روش های دقیق تر برای پیش بینی آلاینده های هوا جهت مدیریت بهتر این مقوله وجود دارد، به نظر می رسد استفاده از روش های ترکیبی جهت مدل سازی آلاینده ها می تواند حرکتی مهم در این راستا باشد. در این پژوهش، پارامترهای تأثیرگذار بر غلظت آلاینده ها در قالب ۴ دسته عوامل ترافیکی، غلظت آلاینده ها در روزهای قبلی، داده های هواشناسی و عوامل مکانی به عنوان ورودی مدل ها مورداستفاده قرار گرفتند و ماکزیمم غلظت آلاینده ها در هر روز به عنوان خروجی مدل در نظر گرفته شد. هدف این پژوهش بررسی عملکرد روش های انتخاب ویژگی جنگل تصادفی و تبدیل موجک در ترکیب با روش های رگرسیون چندمتغیره و شبکه عصبی مصنوعی پرسپترون چندلایه، جهت دستیابی به مدلی کارا به منظور پیش بینی آلاینده های منو اکسید کربن، دی اکسید نیتروژن، دی اکسید گوگرد و PM2.5 می باشد. نتایج به دست آمده نشان داد که مدل سازی همه آلاینده ها با استفاده از شبکه عصبی پرسپترون چندلایه در ترکیب با روش تبدیل موجک صحت بالاتری را نسبت به مدل های دیگر ارائه می نماید. همچنین صحت پیش بینی آلاینده منو اکسید کربن (خطای استاندارد برابر با 8/19 درصد) نسبت به آلاینده های دیگر پایین تر بود درحالی که صحت پیش بینی آلاینده PM2.5 (خطای استاندارد برابر با 0/17 درصد) بالاتر از سایر آلاینده ها بود. علاوه بر این، باتوجه به پارامترهای انتخاب شده توسط روش انتخاب ویژگی با استفاده از جنگل تصادفی، پارامترهای غلظت آلاینده ها در روزهای قبل از اهمیت بالایی به منظور پیش بینی آلاینده های مختلف برخوردارند.

A wavelet-ANN-based framework for estimating air pollutant concentrations using remotely sensed data in Tehran metropolitan area

In developing countries, most major cities are increasingly exposed to air pollution as a factor affecting the quality of life and public health of the community. High population density in Tehran causes this metropolitan area to be one of the most important region in Iran. Polluting industry and the use of polluting transportation are two of the main sources of air pollutant in Tehran and have turned this city to the most polluted metropolitan area in Iran. Consequently, the need for the air pollution reduction is too necessary in this area. The air pollutant concentration predictions can improve decision making for appropriate solutions to reduce air pollution. Since more precise methods are required to predict air pollutants for better management of this problem, using hybrid methods can be an important step in modeling different pollutants. This study examined the performance of the random forest feature selection and wavelet transformation methods when they combine with the multiple-linear regression and multilayer perceptron artificial neural network to achieve an efficient model to estimate several pollutants including carbon monoxide, nitrogen dioxide, sulfur dioxide, and PM2.5 in Tehran metropolitan area. For these purpose four groups of remotely sensed-derived and spatial data including spatial data, meteorological data, traffic information, and the air pollutant concentrations in the days before the prediction day were applied as the input data of the models. Results showed that the modeling of all pollutants by the multilayer perceptron neural network along with the wavelet transform method provides higher accuracy than the other models. Furthermore, the estimation accuracy of the carbon monoxide pollutant (with error of estimation=19.8% ) was lower than the other pollutants while PM2.5 (with error of estimation=17.0%) was estimated with higher accuracy compared to that derived for other pollutants. Moreover, it was shown that the pollutant concentrations for the days before the day for that the estimation is implemented are the most important attributes, according to the random forest feature selection method.

تبلیغات