الگوریتم های یادگیری ماشین برای پیشگیری از انتشار بیماری های واگیر بر پایه ویژگی های مؤثر در تشخیص کووید-19(مقاله علمی وزارت علوم)
حوزه های تخصصی:
این مطالعه باهدف توسعه الگوریتم های هوش مصنوعی بر پایه اینترنت اشیاء انجام شده است که ضمن تشخیص و پیش بینی همه گیری در زمان واقعی با استفاده از مکان افراد، بر مراقبت و بهبود نیز تأکید می کند.بیماری هدف در این پژوهش باتوجه به اهمیت و فراگیری، کووید19 است.بر اساس نوع گردآوری داده ها از نوع پژوهش های کیفی بوده و باتوجه به توسعه الگوریتم ها، روش تحقیق در این پژوهش مبتنی بر علم طراحی است. رویکرد تحقیق آینده نگر است، به طوری که مکانیزم انتقال بیماری و ویژگی های تأثیرگذار آن ما را قادر به پیش بینی هایی در مورد بیماری و در نتیجه طرح استراتژی های کنترل بیماری و مراقبت های بهداشتی می نماید.پژوهش در یک فرایند 7 مرحله ای انجام شد. ویژگی های اینترنت اشیاء در پژوهش حاضر با نظر خبرگان استخراج شد و ویژگی های به دست آمده در آزمایش 2 الگوریتم مختلف «k نزدیک ترین همسایگی» و «درخت تصمیم» بر روی داده ها برای تعیین بهترین مدل ایجاد شد.پس از انتخاب بهترین عمق و بهترین همسایگی در الگوریتم ها، اعتبار و تصدیق مدل با تحلیل ماتریس ابهام انجام شد.نتایج اجرای الگوریتم ها برای پیش بینی بیماری کووید19، دقت بالاتر از 98 درصد را نشان دادند. حساسیت بالاتر (99 درصد) که برای تشخیص بیماری کووید19 اهمیت بالایی دارد و نشان دهنده حداقل موارد منفی کاذب در نتایج آزمون است، در الگوریتم درخت تصمیم به دست آمد.