آرشیو

آرشیو شماره ها:
۴۵

چکیده

هدف از این پژوهش استفاده از مدل یادگیری جمعی برای ترکیب پیش بینی های مدل های جنگل تصادفی، حافظه طولانی کوتاه مدت و شبکه عصبی بازگشتی جهت ارائه یک سیستم معاملاتی الگوریتمی مبتنی بر آن می باشد. در این پژوهش یک مدل پیش بینی مبتنی بر مدل یادگیری ماشین جمعی ارائه شده است و عملکرد آن با هر یک از زیر الگوریتم ها و داده های واقعی مقایسه می شود. در این پژوهش در مرحله اول با استفاده از سه مدل یادگیری ماشین، سقف و کف قیمت بیت کوین پیش بینی شده است. در مرحله دوم، خروجی های مدل ها به عنوان متغیرهای ویژگی به مدل های XGboost  و LightGBM جهت پیش بینی سقف و کف ها ارائه شده است. سپس در مرحله سوم خروجی های مرحله دوم، با الگوی دسته بندی رای گیری جمعی برای پیش بینی سقف و کف بعدی، ترکیب می شوند. داده های سقف و کف قیمت بیت کوین در تایم فریم 1 ساعته از تاریخ 1/1/2018 الی آخر 30/6/2022 به عنوان متغیر هدف و 31 اندیکاتور تحلیل تکنیکال به عنوان متغیر ویژگی برای سه مدل در مرحله اول استفاده شده اند. در نهایت مقادیر پیش بینی و سیستم های معاملاتی الگوریتمی با داده های واقعی برای 3 مدل و مدل یادگیری جمعی معرفی شده مورد ارزیابی و مقایسه قرار گرفتند. نتایج به دست آمده نشان دهنده ارتقا عملکرد دقت و صحت مدل یادگیری جمعی پیشنهاد شده در پیش بینی سقف و کف بیت کوین و همچنین، عملکرد بهتر آن نسبت به زیر الگوریتم ها می باشد

Comparing the Performance of Algorithmic Trading Systems based on Machine Learning in the Cryptocurrency Market

The purpose of this research is to use the ensemble learning model to combine the predictions of random forest models, short-term long memory and recurrent neural network to provide an algorithmic trading system based on its. In this research, a prediction model based on ensemble machine learning model is presented and its performance is compared with each of the sub-algorithms and real data. In this research, in the first stage, using three machine learning models, the price top and bottom of Bitcoin have been predicted. In the second stage, the outputs of the models are presented as feature variables to the XGboost and LightGBM models to predict the roof and floors. Then, in the third stage, the outputs of the second stage are combined with the collective voting classification pattern to predict the next ceiling and floor. Bitcoin price top and bottom data in the 1-hour time frame from 1/1/2018 to the end of 6/30/2022 have been used as target variables and 31 technical analysis indicators as feature variables for three models in the first stage. Finally, forecast values and algorithmic trading systems were evaluated and compared with real data for 3 models and the introduced ensemble learning model. The obtained results show the improvement of the precision and accuracy of the proposed collective learning model in predicting the top and bottom of Bitcoin, as well as its better performance than the sub-algorithms.

تبلیغات