طراحی راهروی ایمن در برابر تخریب ناشی از زلزله در ساختمان دانشکده معماری و شهرسازی دانشگاه هنر در پردیس باغ ملی تهران (مقاله علمی وزارت علوم)
درجه علمی: نشریه علمی (وزارت علوم)
آرشیو
چکیده
با توجه به اهمیت شناخت آسیب پذیری و مقاوم سازی ساختمان های بنایی غیرمسلح در برابر زلزله در ایران، یکی از راهکارهای بهینه، ایمن سازی فضاها با تاکید بر سطح عملکردی جانی کاربران است. بنابراین، مساله اصلی این پژوهش عبارت است از طرح راهروی ایمن چیست و چگونه جان کاربران ساختمان دانشکده معماری و شهرسازی دانشگاه هنر در پردیس باغ ملی تهران را در برابر تخریب ناشی از زلزله تامین می کند؟ در این پژوهش کاربردی، ابتدا مشاهدات میدانی از بنا صورت گرفته است. سپس، مطالعات کتابخانه ای پیرامون ادبیات و پیشینه تحقیق اجرا شده است. در ادامه، واکاوی موشکافانه اسناد، مدارک و نقشه های ساختمان مذکور انجام شده است. بعد از آن، مصاحبه و مشورت با خبرگان صورت پذیرفته است. در نهایت، با بهره گیری از ظرفیت های روش تحلیلی-محاسباتی با تمرکز بر سناریوهای مختلف و آیین نامه ها (زلزله، بارگذاری و فولاد) و نرم افزارهای مربوطه (SAP2000 و...) و همچنین از طریق راهبرد مطالعه موردی، راهروی ایمن طراحی گردیده است. طرح راهروی ایمن، جهت فراهم نمودن فضایی برای پناه گرفتن کاربران ساختمان در زمان وقوع زلزله تا زمان رفع خطر، به عنوان مناسب ترین روش به لحاظ حفظ ماهیت میراث فرهنگی بنا در کنار رعایت محدودیت های اقتصادی تبیین شد. سازه فولادی طرح با ظرفیت های برجسته، پیکربندی خاص، قاب ها و اتصالات ویژه و اجزاء غیرسازه ای آن برمبنای قابلیت انعطاف پذیری و انطباق پذیری با بنای تاریخی موجود طراحی شد.Designing a Safe Corridor against Earthquake Damage in Architecture and Urban Planning Faculty Building of the University of Art in Tehran Bagh-e-Melli Campus
Understanding the dangers of earthquakes is essential for all types of buildings, especially masonry buildings, in order to provide the most appropriate solution to reduce damage. Therefore, the main purpose of this study is to provide a safe corridor against earthquake damage to ensure the safety of users of the Architecture and Urban Planning Faculty building of the University of Art in Tehran Bagh-e-Melli Campus. In this applied research, initially field research has been conducted in the form of observation of the building. Then, library and documentary studies have been conducted on the theoretical foundations and research background. Finally, using the capacities of the analytical-computational method and the case study strategy, a safe corridor design is presented. This study describes earthquake damage and the main methods of reducing them in masonry buildings and explains the use of safe corridor construction to provide space for building users to shelter during an earthquake until the danger is eliminated, as the most appropriate method in terms of preservation of the historical nature of the building along with observing the economic constraints of the project. In fact, the structure of the safe corridor, using steel materials and special fittings, is designed to be durable, malleable, of appropriate weight, dismantled and recycled, and suitable for historic buildings. In terms of financing, retrofitting methods with a higher level of performance should be used in a way that provides not only the safety of people's lives, but also the static of this valuable historical monument. The new simulation method of the applied element can be used to predict the behavior of the building under earthquake impact and the function of a safe corridor. This method, which has been developed specifically to simulate the failure of buildings, has a very powerful potential for studying this issue. Due to the ease and speed of the earthquake corridor design, it is recommended to use this design in all places that are prone to total or partial damage to the earthquake and where more advanced retrofitting methods can not be used due to economic constraints. Since the design of safe corridors in historic buildings is likely to be unique, it is recommended that the level of service in all historic buildings and cultural monuments be upgraded to match the level of safety (to ensure the safety of users). Due to the fact that this method is not destructive, in addition to implementing basic methods and the cost of strengthening (to achieve a higher level of performance), the safe corridor design method should be used locally or widely. In fact, a safe corridor is for the immediate evacuation of building rooms from the crowd and transferring to the corridors and then exiting the building. In short, due to financial constraints and the inability to use higher performance level designs, implementing a safe corridor design, while preserving the historical character of the building will greatly ensure the safety of building users.