از دیرباز، دستیابی به یک ساختار سرمایه بهینه با هدف حداکثرسازی سود و ارزش شرکت و حداقل سازی هزینه سرمایه از موضوعات مورد توجه متخصصان مالی بوده و چهار نظریه اصلی شامل نظریه میلر و مودیگلیانی، نظریه نمایندگی، نظریه توازن ایستا (هر سه ناظر بر رابطه مثبت میان نسبت بدهی و سودآوری) و نظریه سلسله مراتبی (رابطه منفی بین نسبت بدهی و سودآوری) درباره ارتباط میان تصمیمات تأمین مالی و سودآوری شرکت ها مطرح شده است. در این راستا، پژوهش حاضر با استفاده از تحلیل رگرسیون و روش الگوریتم ترکیبی شبکه عصبی موجکی و الگوریتم رقابت استعماری به تخمین تابع سودآوری ساختار سرمایه در نمونه آماری شامل 161 شرکت پذیرفته شده در بورس اوراق بهادار تهران در پنج صنعت ( کاشی و سرامیک، سیمان، فلزات، نفت و گاز و داروسازی) طی بازه زمانی 1396-1389 پرداخته است. نتایج به دست آمده از رابطه منفی بین نسبت های بدهی و نسبت بازده دارایی ها (تأیید نظریه سلسله مراتبی) در شرکت های فعال در صنایع کاشی و سرامیک، سیمان، فلزات و داروسازی حکایت داشت. اما، رابطه معناداری بین متغیرهای مذکور در صنعت نفت و گاز مشاهده نشد. به علاوه، عملکرد شبکه عصبی موجکی بهینه سازی شده با الگوریتم رقابت استعماری در تمامی صنایع، قدرت تبیین بیشتری نسبت به رگرسیون خطی ساده از خود نشان داد.