مطالب مرتبط با کلیدواژه

شبکه عصبی GMDH


۱.

مدل سازی و پیش بینی قیمت بنزین با استفاده از شبکه عصبی GMDH(مقاله علمی وزارت علوم)

کلیدواژه‌ها: پیش بینی الگوریتم ژنتیک تحلیل تکنیکی میانگین متحرک مدل سازی قیمت نفت شبکه عصبی GMDH قیمت بنزین روش قیاسی

حوزه های تخصصی:
تعداد بازدید : ۳۴۰۶ تعداد دانلود : ۱۶۴۷
در این پژوهش از شبکه عصبی GMDH مبتنی بر الگوریتم ژنتیک به عنوان ابزاری با قابلیت بالا در مدل سازی سیستم های غیرخطی پویای پیچیده، برای پیش بینی قیمت بنزین با دو روش قیاسی و قواعد تحلیل تکنیکی، استفاده کرده ایم. متغیرهای ورودی در روش قیاسی شامل تمام عوامل مؤثر(درون و برون سیستمی) بر قیمت بنزین و در روش تحلیل تکنیکی شامل میانگین های متحرک کوتاه و بلندمدت است. نتایج نشان دهنده دقت بیش از 96درصد پیش بینی و پایداری روش قیاسی و بیش از99درصد تحلیل تکنیکی است. اثر روز دوشنبه به عنوان یک معیار تحلیل تکنیکی در روش قیاسی، تایید شده است. همچنین، در مقایسه معیارهای خطا، دقت پیش بینی های شبکه عصبی GMDH به طور معناداری از الگوی رگرسیونی بهتر است.
۲.

محاسبه هوشمند حداکثر درآمد در بازار پیش خرید و پیش فروش نفت خام(مقاله علمی وزارت علوم)

کلیدواژه‌ها: الگوریتم ژنتیک عایدی تحلیل تکنیکی نفت خام شبکه عصبی GMDH بازار پیش خرید و پیش فروش بهینه سازی چند منظوره

حوزه های تخصصی:
تعداد بازدید : ۱۳۵۸ تعداد دانلود : ۸۳۹
در این مقاله، از رویکرد هوشمند تلفیقی، مشتمل بر نوعی از شبکه عصبی موسوم به GMDH و الگوریتم ژنتیک و بهینه سازی چند منظوره، برای تحلیل قیمت پیش خرید و پیش فروش نفت خام به منظور محاسبه حداکثر درآمد حاصل از پیش بینی در روندهای مختلف بازار مبتنی بر قواعد تحلیل تکنیکی استفاده شده است. نتایج نشان میدهد که در بازه زمانی 5 تا 10 روزه برای دوره های مختلف، بازار عایدی مطلق به 97% میرسد. هم چنین روند صعودی دارای بیش ترین عایدی و روند بیثباتی توام با تغییر، کم ترین عایدی را دارد.
۳.

پیش‎بینی تقاضای آب شهرتهران با استفاده از الگوهای ساختاری، سری‎های زمانی و شبکه عصبی نوع GMDH(مقاله علمی وزارت علوم)

کلیدواژه‌ها: شبکه عصبی GMDH تقاضای آب شهر تهران پیش‎بینی الگو‎های ساختاری و سری زمانی

حوزه های تخصصی:
تعداد بازدید : ۲۱۱۶ تعداد دانلود : ۱۲۲۴
روش‎ها و الگوهای اقتصاد سنجی متفاوتی، از قبیل تجزیه و تحلیل رگرسیون و سری‎های زمانی به منظور پیش‎بینی تقاضای آب، به‎طور معمول توسط محققان مختلف مورد استفاده قرار گرفته‎اند. اما در سال‎های اخیر تکنیک جدید شبکه‎های عصبی به عنوان ابزاری مؤثر و کارا در پیش‎بینی متغیرهای اقتصادی مطرح شده است. در مقاله حاضر، از شبکه عصبی نوع GMDH مبتنی برالگوریتم ژنتیک، الگوهای ساختاری و هم‎چنین سری‎های زمانی، به منظور مقایسه روش‎های پیش‎بینی تقاضای سرانه آب در شهر تهران استفاده شده است. متغیرهای مورد نظر در الگوهای پیش بینی تقاضای آب عبارتند از مصرف سرانه آب، قیمت آب، متوسط درآمد خانوار و متوسط درجه حرارت سالانه در شهر تهران. نتایج به‎دست آمده حاکی از آن است که پیش -بینی تقاضای آب با استفاده از روش شبکه‎های عصبی نوع GMDH، نسبت به برآوردهای حاصل از الگوهای ساختاری و سری زمانی، از درجه کارایی بیش‎تری برخوردار است. بنابراین، استفاده از شبک? عصبی مصنوعی در پیش بینی متغیرهای اقتصادی، می‎تواند به عنوان ابزاری در کنار سایر روش‎های پیش بینی مورد استفاده تصمیم‎گیران و سیاست‎گذاران در بخش مدیریت آب قرار گیرد.
۴.

پیش بینی قیمت آمونیاک با رویکرد تحلیل های بنیادین، تکنیکی و شبکه عصبی(مقاله علمی وزارت علوم)

کلیدواژه‌ها: پیش بینی تحلیل تکنیکی شبکه عصبی GMDH قیمت آمونیاک قیمت گاز طبیعی تحلیل بنیادین

حوزه های تخصصی:
  1. حوزه‌های تخصصی اقتصاد اقتصاد بخشی،اقتصاد صنعتی،کشاورزی،انرژی،منابع طبیعی،محیط زیست اقتصاد صنعتی ساختار بازار،استراتژِ بنگاه و عملکرد بازار تولید،قیمت گذاری و ساختار بازار،توزیع سایز بنگاه ها در بازار
  2. حوزه‌های تخصصی اقتصاد روش های ریاضی و کمی روش های آماری و اقتصادسنجی:موضوعات خاص شبکه های عصبی و موضوعات مربوطه
تعداد بازدید : ۲۵۲۱ تعداد دانلود : ۱۵۶۱
با توجه به اهمیت پیش بینی در حوزه مسایل مالی و اقتصادی محققان همواره در تلاشند که از روش های دقیق تری در این زمینه بهره بگیرند تا به درک نسبی بهتری از وضعیت آینده بازار دست یافته، از نااطمینانی ها بکاهند. در این مقاله از شبکه عصبی GMDH مبتنی بر الگوریتم ژنتیک به عنوان ابزاری با قابلیت بالا در مدل سازی سیستم های غیر خطی پویای پیچیده، برای پیش بینی قیمت آمونیاک استفاده شده است. برای اتنخاب متغیرهای اثرگذار بر قیمت آمونیاک از دو روش تحلیل بنیادین و تکنیکی استفاده شده است. روش تحلیل بنیادین با تکیه بر تئوری عرضه و تقاضا و نگرش کلان اقتصادی، همه عوامل اثرگذار احتمالی بر قیمت را برای مدل سازی و پیش بینی قیمت به محقق پیشنهاد می کند، سپس با تکیه بر توانایی الگوریتم GMDH در شناسایی متغیرهای زاید، از میان همه عوامل اثرگذار احتمالی تنها از عناصر اثرگذارتر بر قیمت آمونیاک استفاده شده است تا پیش بینی های دقیق تر و بدون تورشی ارایه شود. دقت پیش بینی های انجام شده در بازه مورد بررسی بیش از 99 درصد است. در روش تحلیل تکنیکی، پیش بینی ها با تکیه بر رفتار گذشته قیمت در همان بازار (در اینجا آمونیاک خاورمیانه) نتایج دقیقی را به دست داده است. برتری شبکه عصبی GMDH در دقت پیش بینی قیمت آمونیاک نسبت به روش ARIMA در بخش پایانی مورد تایید قرار گرفته است.
۵.

رتبه بندی اعتباری مشتریان حقوقی بانک پارسیان

کلیدواژه‌ها: اعتبارسنجی شبکه عصبی GMDH ریسک اعتباری رگرسیون لاجیت و پروبیت

حوزه های تخصصی:
تعداد بازدید : ۴۰۶۱ تعداد دانلود : ۱۹۶۶
این مقاله با هدف مدلسازی سنجش ریسک اعتباری و اعتبارسنجی مشتریان در بانک پارسیان به روش رگرسیون لاجیت و پروبیت و مدل شبکه های عصبی هوشمند GMDH انجام می شود. بدین منظور اطلاعات و داده های مالی و کیفی یک نمونه تصادفی 400 تایی از مشتریان که تسهیلات دریافت نموده اند مورد بررسی قرار می گیرد. این حجم نمونه از مشتریان دارای حساب منتهی به سال 1388 انتخاب شده اند. در این مقاله پس از بررسی پرونده های اعتباری هر یک از مشتریان، 11 متغیر توضیح دهنده مورد ارزیابی قرار می گیرد. نتایج مقاله ضمن دلالت بر تایید نظریه های اقتصادی و مالی نشان می دهد که عملکرد پیش بینی الگوی شبکه عصبی (درصد پیش بینی های صحیح آن) به مراتب بهتر از الگوهای اقتصادسنجی متعارف لاجیت و پروبیت است و در زمینه عوامل موثر بر ریسک اعتباری نشان می دهد که از بین متغیرهای مذکور، نوع وثیقه و نسبت بدهی دارای بیشترین اثر بر متغیر احتمال نکول می باشند. همچنین سابقه همکاری، نسبت جاری، نسبت آنی و نسبت مالکانه دارای اثر معمولی و سایر متغیرها کم اثر هستند
۶.

اثرات جهانی شدن بر اشتغال و تقاضای نیروی کار ماهر و غیرماهر ایران(مقاله علمی وزارت علوم)

کلیدواژه‌ها: اشتغال جهانی شدن شبکه عصبی GMDH شاخص جهانی شدن تقاضای نیروی کار ماهر و غیرماهر

حوزه های تخصصی:
تعداد بازدید : ۱۳۰۲ تعداد دانلود : ۱۰۱۶
در این مطالعه تلاش م یشود تا اثرات گوناگون جهانی شدن اقتصاد بر روی تقاضای کل نیروی کار و همچنین تقاضای نیروی کار ماهر و غیرماهر در ایران ارزیابی شود. بدین منظور در این مطالعه برای بررسی و پی شبینی اثرات جهان یشدن روی بازار کار در بازه زمانی 1353-85 از دو مدل ARDL و شبکه عصبی و نیز دو شاخص آزادسازی و سرمایه گذاری مستقیم خارجی به عنوان شاخ صهای جهانی شدن استفاده شده است. نتایج نشان م یدهد که اثر جهان یشدن بر تقاضای کل نیروی کار مثبت و معن یدار بوده و اثر جهانی شدن بر تقاضای نیروی کار ماهر بیشتر از تقاضای نیروی کار غیرماهر است. همچنین شبکه عصبی عملکرد بهتری در پیش بینی متغیر هدف نسبت به روش ARDL ، دارد
۷.

استفاده از رهیافت شبکه عصبی در پیش بینی مصرف انرژی خط یک متروی تهران(مقاله علمی وزارت علوم)

کلیدواژه‌ها: پیش بینی انرژی متروی تهران شبکه عصبی GMDH

حوزه های تخصصی:
تعداد بازدید : ۴۳۷ تعداد دانلود : ۲۲۹
امروزه انرژی و میزان مصرف آن، محور استراتژیک برنامه ریزی های سازمانی است. گسترش سیستم حمل ونقل درون شهری بدون در نظر گرفتن شرایط گوناگون اقتصادی، علمی، صنعتی، آب و هوایی و رشد روزافزون شهرنشینی امکان ناپذیر است . تحلیل روندهای پیشین اطلاعات مصرف انرژی جهت پیش بینی روندهای آینده با درنظرگرفتن نرخ توسعه خطوط مترو، راه حلی کلیدی در راستای برنامه ریزی ها و سیاست گذاری های کلان آینده محور خواهد بود. در این پژوهش برای پیش بینی مصرف انرژی خط یک متروی تهران از مدل شبکه عصبی GMDH استفاده شده است که از قابلیت شناسایی و غربال کردن متغیرهای ورودی کم اثر در دوره آموزش شبکه و حذف آن ها در دوره آزمون، برخوردار می باشد و همچنین برای درک میزان دقت پیش بینی با مدل ARIMA مورد مقایسه قرارگرفته است. در این پژوهش، دوازده متغیر اثرگذار بر میزان مصرف انرژی متروی تهران شناسایی شده و به عنوان متغیرهای ورودی مدل در نظر گرفته شده است. نتایج حاکی از آن است که مدل شبکه عصبی GMDH ، به مراتب خطای کمتری را نسبت به مدل ARIMA دارد و از دقت پیش بینی بالاتری برخوردار است.
۸.

الگوسازی و پیش بینی EPS شرکت های پذیرفته شده در بورس اوراق بهادار تهران با رویکرد شبکه عصبی GMDH(مقاله علمی وزارت علوم)

کلیدواژه‌ها: نسبت های مالی سود هر سهم شبکه عصبی GMDH روش ARIMA

حوزه های تخصصی:
تعداد بازدید : ۱۴۲ تعداد دانلود : ۸۶
پیش بینی سود هر سهم و تغییرات آن، یک رویداد اقتصادی است که از دیرباز مورد علاقه سرمایه گذاران، مدیران، تحلیل گران مالی و اعتباردهندگان بوده است. در این پژوهش از شبکه عصبی GMDH که ابزاری با قابلیت بالا در مسیریابی و تشخیص روندهای غیرخطی پیچیده با تعداد مشاهدات محدود است، برای الگوسازی و پیش بینی سود هر سهم از شرکت های پذیرفته شده در بورس اوراق بهادار تهران استفاده شده است. ابتدا الگویی شامل هشت نسبت مالی طراحی و سپس با استفاده از فرآیند قیاسی و نیز کنارگذاشتن هر متغیر از الگوی بنیادی، در مجموع هشت مدل اجرا شد. نتایج نشان داد، الگوهای حاصل از کنار گذاشتن بازده دارایی ها، نسبت جاری و بازده سرمایه از الگوی بنیادی، به ترتیب بیشترین تأثیر را در کاهش خطای پیش بینی سود هر سهم دارند. همچنین گردش موجودی کالا و دوره وصول مطالبات، دارای اثر مضاعف در کاهش خطا هستند. درنهایت برتری شبکه عصبی GMDH در دقت پیش بینی سود هر سهم نسبت به روش ARIMA، بر اساس معیارهای خطا نیز مورد تأیید قرار گرفت.
۹.

پیش بینی ارزش طول عمر مشتریان بانکی با استفاده از تکنیک دسته بندی گروهی داده ها (GMDH) در شبکه عصبی(مقاله علمی وزارت علوم)

کلیدواژه‌ها: ارزش طول عمر مشتری پیش بینی شبکه عصبی GMDH مدیریت ارتباط با مشتری

حوزه های تخصصی:
تعداد بازدید : ۱۶۱ تعداد دانلود : ۱۱۱
امروزه نقش مدیریت ارتباط با مشتری به عنوان ابزار راهبردی در توسعه سازمان های تولیدی و خدماتی و همچنین جذب و نگهداری مشتریان در صنایع رقابتی، انکارناپذیر است. شناسایی، ارزش گذاری و دسته بندی مشتریان و تخصیص بهینه منابع به آنها با توجه به ارزشی که برای سازمان ها دارند، از دغدغه های اصلیِ حوزه مدیریت ارتباط با مشتری است. در این مقاله با استفاده از شبکه عصبی GMDH به محاسبه و پیش بینی ارزش طول عمر مشتریان، به عنوان ابزاری کلیدی در تحقق نقش مدیریت ارتباط با مشتری در صنعت بانکداری پرداخته شده است. برای این منظور، اطلاعات جمعیت شناختی و مالی 5000 مشتری حقیقی ارزنده یکی از بانک های خصوصی کشور با شرط میانگین موجودی بیش از 500 میلیون ریال در حداقل یکی از حساب ها، وارد شبکه شد. نتایج نشان داد به کمک این روش می توان با دقت بالای 90 درصد ارزش طول عمر مشتریان را پیش بینی کرد که به نسبت روش های آماری متعارف، دقت بیشتری دارد. پس از حذف متغیرهای مؤثر و مضاعف، شبکه بار دیگر آزمایش شد که در این حالت نیز پیش بینی با دقت بیش از 85 درصد بود
۱۰.

عملکرد دو روش ARIMA و شبکه عصبی GMDH در پیش بینی تقاضای گاز طبیعی در بخش های مختلف (ایران-1380-1389)(مقاله علمی وزارت علوم)

کلیدواژه‌ها: پیش بینی تقاضای گاز طبیعی شبکه عصبی GMDH ARIMA

حوزه های تخصصی:
تعداد بازدید : ۱۰۵ تعداد دانلود : ۸۹
باتوجه به افزایش روزافزون مصرف گاز طبیعی، برنامه ریزی در بخش گاز طبیعی و بررسی و پیش بینی تقاضای گاز طبیعی جهت دستیابی به امنیت عرضه انرژی گاز طبیعی و به دنبال آن توسعه پایداراهمیت فراوانی دارد. از این رو در این تحقیق تقاضای گاز طبیعی در بخش های خانگی-تجاری، صنعت و نیروگاه که جزء مصرف کنندگان عمده گاز طبیعی هستند مورد بررسی قرار گرفته و از دو روش ARIMA (Autoregressive Integrated Moving Average) و شبکه عصبی GMDH (Group Method of Data Handling) برای پیش بینی تقاضای گاز طبیعی و از معیارهای MSE (Mean Squared Error)، RMSE (Root Mean Squared Error)، درصد خطای پیش بینی و دقت پیش بینی جهت مقایسه دو روش استفاده شده است. با توجه به نتایج، دقت پیش بینی به ترتیب در سه بخش خانگی - تجاری ، صنعتی و نیروگاه در روش ARIMA 8/93، 3/98 و 87 درصد و در روش شبکه عصبی GMDH 4/96، 99 و 2/98 درصد بدست آمده است و معیارهای RMSE و MSE در هر سه بخش برای روش شبکه عصبی GMDH کوچکتر از روش ARIMA بوده است. از این رو می توان نتیجه گرفت که با توجه به مدلسازی صورت گرفته، روش شبکه عصبی GMDH عملکرد و دقت بالاتری نسبت به روش ARIMA در پیش بینی تقاضای گاز طبیعی دارد.
۱۱.

بهینه سازی نتایج الگوریتم ML-Based GMDH به منظور افزایش دقت تشخیص گردوغبار و عمق دید افقی ازطریق الگوریتم TLBO(مقاله علمی وزارت علوم)

کلیدواژه‌ها: گردوغبار تشخیص دید افقی سنجش از دور یادگیری ماشین الگوریتم TLBO شبکه عصبی GMDH

حوزه های تخصصی:
تعداد بازدید : ۳۷ تعداد دانلود : ۳۷
سابقه و اهداف: کیفیت هوای پاک، به منزله یکی از ضروری ترین نیازهای موجودات زنده، براَثر فعالیت های طبیعی و انسانی به مخاطره افتاده است. در سال های اخیر، طوفان های گردوغبار ازلحاظ مکانی و زمانی همواره درحال افزیش بوده و سبب آسیب های بی شمار درحوزه سلامت اجتماعی، اقتصادی و زیست محیطی، برای ساکنان مناطق جنوب و جنوب غرب ایران، شده است. در پژوهش حاضر، به منظور بررسی طوفان های گردوغبار و تشخیص عمق دید افقی، داده های سنجنده مادیس به کار رفته است. مواد و روش ها: از مزایای داده های سنجنده مادیس می توان به توان تفکیک طیفی و زمانی بالا اشاره کرد. همچنین داده های ایستگاه های هواشناسی با توجه به بازه زمانی مورد مطالعه جمع آوری شده است. پس از پیش پردازش داده ها و آماده سازی مشاهدات میدانی، به منظور استخراج ویژگی های مورد نیاز برای انجام دادن مدل سازی ها، ازطریق روش تفاضلی بین باندهای منتخب هر تصویر داده های سنجنده مادیس، به همراه ویژگی های استخراج شده از سنسورهای ایستگاه های هواشناسی زمینی استفاده شده است. با بررسی های بیشتر و ارزیابی های صورت گرفته و استفاده از دیدگاه های خبرگان هواشناسی، 36 ویژگی تفاضلی از باندهای گوناگون تصاویر مادیس و شش ویژگی از داده های ایستگاه های هواشناسی زمینی، یعنی درمجموع 42 ویژگی، استخراج شده است. در ادامه، ازطریق تکنیک های انتخاب ویژگی، بهترین ویژگی ها شناسایی و با به کارگیری روشی جدید با نام ML-Based GMDH، که حاصل بهبود شبکه عصبی GMDH ازطریق تغییر توابع جزئی با مدل های یادگیری ماشین است، برای تشخیص غلظت گردوغبار و دید افقی استفاده شد. برای دستیابی به دقت مناسب نیز ابرپارامترهای این مدل به صورت ابتکاری، با استفاده از الگوریتم بهینه سازی TLBO، تنظیم شدند. در ادامه، روش های یادگیری ماشین Basic GMDH SVM، MLP، MLR، RF و مدل گروهی آنها نیز، برای مقایسه با رویکرد اصلی، اجرایی شد؛ طبق نتایج، روش ML-Based GMDH تنظیم شده با  TLBOبا ایجاد بهبود درقیاس با روش های یادگیری ماشین ذکرشده، دقت بهتری را در تشخیص غلظت گردوغبار فراهم کرده است. نتایج و بحث: روش SVM-PSO به منزله روش برتر در مرحله انتخاب ویژگی، روش RF به منزله روش برتر در میان روش های پایه دسته بندی و روش های Ensemble SVM و Ensemble RF به منزله روش های برتر در مرحله گروهی و دسته بندی انتخاب شدند. همچنین مشاهده شد، با استفاده از رویکرد گروهی، بهبود مطلوبی در تشخیص دسته دید افقی پدید آمد. در رویکرد دوم، روشی با عنوان ML-Based GMDH که حاصل بهبود شبکه عصبی GMDH ازطریق تغییر توابع جزئی با مدل های یادگیری ماشین است، استفاده شد که کاربرد آن در تقریب غلظت گردوغبار است. همچنین، برای دستیابی به دقت مناسب، ابرپارامترهای این مدل با الگوریتم بهینه سازی TLBO با دقت بسیار بالا تنظیم شدند. نتایج حاصل نشان دادند این روش، با ایجاد بهبود درمقایسه با بهترین روش های انتخابی از رویکرد اول، دقت مناسبی را در تقریب غلظت گردوغبار و عمق دید افقی فراهم کرده است.