سنجش از دور و GIS ایران

سنجش از دور و GIS ایران

سنجش از دور و GIS ایران سال 16 بهار 1403 شماره 1 (پیاپی 61) (مقاله علمی وزارت علوم)

مقالات

۱.

اثر تغییر اقلیم بر فنولوژی پوشش گیاهی حوضه دریاچه ارومیه با استفاده از سری زمانی تصاویر NOAA-AVHRR(مقاله علمی وزارت علوم)

کلیدواژه‌ها: تغییراقلیم سری زمانی پارامترهای فنولوژی شاخص نرمال شده پوشش گیاهی حوضه دریاچه ارومیه

حوزه های تخصصی:
تعداد بازدید : ۵۴ تعداد دانلود : ۴۹
تغییر اقلیم به عنوان یکی از مهم ترین چالش های پیش روی بشر می باشد. این پدیده تاکنون تاثیرات قابل توجهی را بر تولیدات کشاورزی در اکثر نقاط جهان مخصوصا مناطق خشک و نیمه خشک بر جای گذاشته است. همچنین، در اکثر مناطق دنیا طی دهه های اخیر، متوسط درجه حرارت افزایش یافته است. امروزه در تحقیقات مختلف، شاخص های سنجش از دور به عنوان یکی از روش های نوین در شناسایی تغییر اقلیم استفاده می شوند. یکی از شاخص های مهم سنجش از دور، ویژگی های فنولوژی پوشش گیاهی است که در مطالعات اخیر توانایی خوبی در شناسایی و تخمین پوشش گیاهی نشان داده است. در مطالعه حاضر، با استفاده از سری زمانی 5 روزه شاخص نرمال شده پوشش گیاهی (NDVI) از تصاویر NOAA-AVHRR و پارامترهای فنولوژی گیاه، تغییرات پوشش گیاهی مناطق مراتع و اراضی دیم حوضه دریاچه ارومیه در طول سال های 2013-1984 مورد بررسی قرار گرفت. داده های اقلیمی دما و بارش از ایستگاه های هواشناسی حوضه دریاچه ارومیه اخذ و در مقایسه با نتایج تصاویر ماهواره ای استفاده گردید. نتایج تحلیل سری زمانی در طی سی سال دوره آماری در حوضه دریاچه ارومیه نشان داد، پارامتر شروع فصل رشد در منطقه اشنویه، سقز و سراب در سال 2013 نسبت به سال 1984 زودتر آغاز شده است. اما در منطقه مراغه دیرتر آغاز شده است. پارامتر پایان فصل رشد در اشنویه، سقز و تکاب زودتر به پایان رسیده است. همچنین پارامتر اوج رشد در شهرستان های مذکور پوشش گیاهی زودتر به حداکثر مقدار خود رسیده است. طول فصل رشد در شهرستان های اشنویه، مراغه و سقز به ترتیب کوتاه تر شده است. نتایج تحلیل های آماری بدست آمده از تصاویر ماهواره ای و داده های اقلیمی نشان داد که تغییرات پارامترهای فنولوژی به مکان وابسته می باشد و همچنین شب های سرد و روزهای گرم در ابتدای فصل رشد به ترتیب کاهش و افزایش یافته است. اما در انتهای فصل رشد روزهای گرم افزایش داشته است. این تغییرات باعث افزایش شیب منحنی فنولوژی رشد گیاه در زمان پیری گیاه شده است و در نهایت طول فصل رشد را کاهش داده است. 
۲.

پیشرفت ها، چالش ها و دیدگاه ها درزَمینه تصحیح تصاویر ماهواره ای نور شب رایگان(مقاله علمی وزارت علوم)

کلیدواژه‌ها: تصاویر ماهواره ای نور شب مزایا و معایب تصاویر نور شب روش های تصحیح و پیش پردازش

حوزه های تخصصی:
تعداد بازدید : ۵۳ تعداد دانلود : ۴۰
سابقه و هدف: سنجش از دور منبع داده ای قدرتمند برای نقشه برداری از مناطق شهری و نظارت بر پویایی شهرنشینی است. از بین داده های سنجش ازدوری، تصاویری که در شب اخذ می شوند راهی مؤثر برای نظارت بر فعالیت های انسانی، در مقیاس جهانی، فراهم کرده است؛ زیرا این تصاویر با توجه به ویژگی ها و قابلیت هایشان می توانند مناطق شهری و سایر فعالیت های انسانی را که ویژگی اصلی شان استفاده از نور در شب است، با اندازه گیری صحیح مکانی، از پس زمینه بدون نور جدا کنند. این تصاویر با نظارت مستمر و مداوم از منظره شبانه جهانی، منبع و نتایج ارزشمندی از فعالیت های انسانی را، از گذشته تا امروز، فراهم می کند و تجزیه وتحلیل سری زمانی این داده ها برای کشف، تخمین و نظارت بر پویایی اجتماعی و اقتصادی در کشورها، به ویژه مناطق فرعی که آمار رسمی مورد اعتمادی درباره آنها وجود ندارد، بسیار ارزشمند است. با توجه به پیشرفت سنجنده های ماهواره ای نور شب در سال های اخیر و تحقیقات جدید انجام شده درزَمینه داده های نور شب، هدف از این تحقیق بررسی پیشرفت های سنجنده شبانه، معرفی انواع داده ها و محصولات دردسترس، بررسی و بیان مزایا و معایب هریک و همچنین مروری بر روش ها و راه حل های مطرح شده در تحقیقات پیشین است تا مشکلات و محدودیت های این تصاویر حل شود.مواد و روش ها: هدف اصلی از این تحقیق معرفی و بررسی کلی داده های نور شب، مزایا و چالش های هریک و روش های بیان شده به منظور تصحیح مشکلات و چالش هاست. مطالعات درزَمینه تصاویر نور شب DMSP اغلب بر دو بعد مکانی و زمانی تمرکز دارد. در بعد مکانی، نواقص ذاتی این مجموعه داده، یعنی مقادیر اشباع شده مقادیر رقومی در مناطق مرکزی شهری و تأثیرات شکوفایی در مناطق حومه شهری و روستایی درخور توجه است. در بعد زمانی، به دلیل فقدان کالیبراسیون در پردازنده، به فرایندهای اضافی روی محصولات سالیانه داده های پایدار نور شب DMSP برای بررسی پویایی های شهری نیاز است؛ روش های کنونی تصحیحات مشکلات مکانی در دو دسته طیفی و غیرطیفی قرار می گیرد. روش های مطرح شده برای تصحیح مشکلات زمانی این سنجنده نیز، در دو دسته کالیبراسیون سالیانه داده های نور شب و تنظیم الگوی زمانی، بررسی شده است. تصاویر ماهیانه NPP-VIIRS محصولی است که علاوه بر مقادیر نورهای ثابت، مانند چراغ های شهرها و مسیر های حمل ونقل، مقادیری نویزی مانند شعله های گاز و سوختن زیست توده و نویز پس زمینه را نیز شامل می شود؛ به همین دلیل، پیش از استفاده لازم است پردازش شود. همچنین ازآنجا که دقت موقعیت یابی داده های لوجیا کمتر از وضوح مکانی آن است، جابه جایی تصویر در برخی مکان ها ممکن است به 650 متر برسد؛ ازاین رو تصحیح هندسی در این تصویر انجام می شود. انواع این روش ها در این مقاله بررسی شده است.بحث و بررسی: طی مقایسه ای کلی، می توان نتیجه گرفت که در بررسی عملکرد داده های نور شب گوناگون، داده های نور پایدار شبانه DMSP، به رغم مشکلات و محدودیت های موجود، دارای سری زمانی طولانی تری درقیاس با داده های نور شب دیگر است زیرا دوره زمانی 1992 تا 2013 را دربرمی گیرد و همچنان، در بسیاری تحقیقات درزَمینه بررسی پویایی شهری و برآورد روند کلی رشد شهر، کاربرد دارد. درمقایسه، NPP-VIIRS از مزایایی برخوردار است و به نور کمتر نیز حساسیت نشان می دهد اما زمان عبور این ماهواره ساعت 1:30 بامداد است؛ در این ساعت شب، بسیاری از چراغ ها خاموش می شوند و به همین علت ممکن است، درمواردی که فقط از داده نور شب برای بررسی مناطق شهری استفاده می شود، مناسب نباشد. همچنین طی بررسی های انجام شده، این تصویر در تحقیقات درزَمینه فعالیت های اقتصادی کاربرد بیشتری داشته است و حساسیت نداشتن آن به نور آبی از LED ها در توانایی سنجنده، در تعیین کمّیت نورهای مصنوعی ساطع شده از زمین، تأثیر می گذارد.نتیجه گیری: این بررسی با هدف معرفی انواع داده های نور شب سنجش ازدوری و بررسی آنها انجام شده است و به طور خلاصه می توان گفت، درحال حاضر، تحقیقات درزَمینه تصحیح مشکلات مکانی اشباع و شکوفایی به دو دسته طیفی و غیرطیفی تقسیم می شوند. دسته های غیرطیفی اغلب فقط با استفاده از داده نور شب و در برخی موارد، با استفاده از داده های غیرسنجش ازدوری ترکیب می شوند. بررسی روش های طیفی نشان می دهد که اغلب این روش ها از شاخص های طیفی مربوط به پوشش گیاهی و دمای سطح زمین استفاده می کنند. درحال حاضر، تصحیح تصاویر DMSP از بعد زمانی با کالیبراسیون بین داده ها، به طور خاص، با استفاده از روش مناطق مرجع ثابت یا پیکسل های مرجع انجام شدنی است. از معتبرترین روش های مطرح شده در این زمینه، روش منطقه مرجع است. پس از پایان مأموریت سنجنده DMSP-OLS، سنجنده VIIRS معرفی شده است. برخلاف داده سالیانه این ماهواره، داده ماهیانه آن به علت وجود نویزهای پس زمینه، نورهای سرگردان و مواردی ازاین دست، نیاز به تصحیح دارد. طبق بررسی های انجام شده براساس مطالعات موجود در روند تحقیقات، می توان گفت بیشتر مطالعات و روش ها سعی در حذف نویزها با استفاده از چارچوبی مشخص، اما با فرض های متفاوت، دارند. درنَهایت، با توجه به چالش ها و محدودیت های فعلی ماهواره های نور شب، چند پیشنهاد اصلی برای پیشرفت و توسعه در این زمینه مطرح می شود؛ ادغام داده های DMSP-OLS با داده های NPP-VIIRS یا با وضوح بالاتر داده های لوجیا می تواند بیشتر مورد مطالعه قرار گیرد تا یک سری زمانی طولانی تر برای تحقیقات آینده، به منظور بررسی پویایی شهری و موارد مشابه، ایجاد شود.
۳.

بهینه سازی نتایج الگوریتم ML-Based GMDH به منظور افزایش دقت تشخیص گردوغبار و عمق دید افقی ازطریق الگوریتم TLBO(مقاله علمی وزارت علوم)

کلیدواژه‌ها: گردوغبار تشخیص دید افقی سنجش از دور یادگیری ماشین الگوریتم TLBO شبکه عصبی GMDH

حوزه های تخصصی:
تعداد بازدید : ۳۸ تعداد دانلود : ۳۷
سابقه و اهداف: کیفیت هوای پاک، به منزله یکی از ضروری ترین نیازهای موجودات زنده، براَثر فعالیت های طبیعی و انسانی به مخاطره افتاده است. در سال های اخیر، طوفان های گردوغبار ازلحاظ مکانی و زمانی همواره درحال افزیش بوده و سبب آسیب های بی شمار درحوزه سلامت اجتماعی، اقتصادی و زیست محیطی، برای ساکنان مناطق جنوب و جنوب غرب ایران، شده است. در پژوهش حاضر، به منظور بررسی طوفان های گردوغبار و تشخیص عمق دید افقی، داده های سنجنده مادیس به کار رفته است. مواد و روش ها: از مزایای داده های سنجنده مادیس می توان به توان تفکیک طیفی و زمانی بالا اشاره کرد. همچنین داده های ایستگاه های هواشناسی با توجه به بازه زمانی مورد مطالعه جمع آوری شده است. پس از پیش پردازش داده ها و آماده سازی مشاهدات میدانی، به منظور استخراج ویژگی های مورد نیاز برای انجام دادن مدل سازی ها، ازطریق روش تفاضلی بین باندهای منتخب هر تصویر داده های سنجنده مادیس، به همراه ویژگی های استخراج شده از سنسورهای ایستگاه های هواشناسی زمینی استفاده شده است. با بررسی های بیشتر و ارزیابی های صورت گرفته و استفاده از دیدگاه های خبرگان هواشناسی، 36 ویژگی تفاضلی از باندهای گوناگون تصاویر مادیس و شش ویژگی از داده های ایستگاه های هواشناسی زمینی، یعنی درمجموع 42 ویژگی، استخراج شده است. در ادامه، ازطریق تکنیک های انتخاب ویژگی، بهترین ویژگی ها شناسایی و با به کارگیری روشی جدید با نام ML-Based GMDH، که حاصل بهبود شبکه عصبی GMDH ازطریق تغییر توابع جزئی با مدل های یادگیری ماشین است، برای تشخیص غلظت گردوغبار و دید افقی استفاده شد. برای دستیابی به دقت مناسب نیز ابرپارامترهای این مدل به صورت ابتکاری، با استفاده از الگوریتم بهینه سازی TLBO، تنظیم شدند. در ادامه، روش های یادگیری ماشین Basic GMDH SVM، MLP، MLR، RF و مدل گروهی آنها نیز، برای مقایسه با رویکرد اصلی، اجرایی شد؛ طبق نتایج، روش ML-Based GMDH تنظیم شده با  TLBOبا ایجاد بهبود درقیاس با روش های یادگیری ماشین ذکرشده، دقت بهتری را در تشخیص غلظت گردوغبار فراهم کرده است. نتایج و بحث: روش SVM-PSO به منزله روش برتر در مرحله انتخاب ویژگی، روش RF به منزله روش برتر در میان روش های پایه دسته بندی و روش های Ensemble SVM و Ensemble RF به منزله روش های برتر در مرحله گروهی و دسته بندی انتخاب شدند. همچنین مشاهده شد، با استفاده از رویکرد گروهی، بهبود مطلوبی در تشخیص دسته دید افقی پدید آمد. در رویکرد دوم، روشی با عنوان ML-Based GMDH که حاصل بهبود شبکه عصبی GMDH ازطریق تغییر توابع جزئی با مدل های یادگیری ماشین است، استفاده شد که کاربرد آن در تقریب غلظت گردوغبار است. همچنین، برای دستیابی به دقت مناسب، ابرپارامترهای این مدل با الگوریتم بهینه سازی TLBO با دقت بسیار بالا تنظیم شدند. نتایج حاصل نشان دادند این روش، با ایجاد بهبود درمقایسه با بهترین روش های انتخابی از رویکرد اول، دقت مناسبی را در تقریب غلظت گردوغبار و عمق دید افقی فراهم کرده است.
۴.

تحلیل فضایی میزان ابتلا به کوید 19 با کاربرد رگرسیون فضایی(مقاله علمی وزارت علوم)

کلیدواژه‌ها: مدل وزن دار جغرافیایی مدل حداقل مربعات معمولی خودهمبستگی موران تحلیل نقاط داغ

حوزه های تخصصی:
تعداد بازدید : ۴۰ تعداد دانلود : ۴۳
سابقه و هدف: همه گیری کووید 19 به منزله پدیده ای جغرافیایی درنظر گرفته می شود که تجزیه وتحلیل فضایی و تأثیر جغرافیایی آن، در تصمیم گیری و جنبه های زندگی روزمره، بسیار اهمیت می یابد. سامانه اطلاعات جغرافیایی و تکنیک های مکانی می توانند نقش مهمی در تجزیه و تحلیل کلان داده های شیوع این بیماری در سطح جهانی ایفا کنند. مطالعات انجام شده باکمک تکنیک های تحلیل فضایی توانسته اند میزان اهمیت متغیرهای اجتماعی و بهداشتی را در میزان ابتلا و موارد مرگ ومیر ناشی از بیماری کووید 19 نشان دهند؛ هرچند درمورد تأثیر متغیرهای هواشناسی در این زمینه، مطابق با متفاوت بودن نتایج پژوهش های پیشین، همچنان ابهاماتی وجود دارد. با توجه به تنوع اقلیمی ایران، با انجام دادن پژوهش هایی در این زمینه به منظور آشکارسازی عوامل مهم و اثرگذار فضایی، می توان گام های مؤثری برداشت. بنابراین هدف این مطالعه مدل سازی و تعیین عوامل تأثیرگذار در پراکنش بیماری کووید 19، براساس داده های موجود و دردسترس است.مواد و روش ها: در این مطالعه، با استفاده از روش های رگرسیون فضایی عمومی و محلی، عوامل تأثیرگذار در پراکنش میزان ابتلا به بیماری کووید 19 بررسی شد. برای این منظور، 73 شهرستان که آمار تعداد مبتلایان به بیماری کووید 19 آنها (طی دوره ای کوتاه، از دهم اسفند 98 تا بیستم خرداد 99 به تفکیک شهرستان ها) دردسترس بوده است، انتخاب شدند. عوامل ارتفاع، تراکم جمعیت و میانگین سنی، نسبت جمعیت بالای 55 سال به جمعیت کل و همچنین پارامترهای هواشناسی شامل رطوبت، دما، فشار و سرعت باد انتخاب و رابطه آنها با این بیماری، به کمک روش های آمار فضایی، بررسی شد. براساس روش رگرسیون گام به گام تراکم جمعیت، فشار هوا، میانگین سن و سرعت باد به منزله پیش بینی کننده های معنی دار تعیین شدند و بروز بیماری با استفاده از تکنیک OLS مدل سازی شد. سپس با توجه به ناایستابودن رابطه متغیرهای مستقل با متغیر وابسته، هم در بعد فضایی و هم در بعد داده ها، تکنیک GWR به کار رفت و برای افزایش تغییرپذیری فضایی و برطرف کردن مشکل هم راستایی خطی، از روش تحلیل مؤلفه های اصلی و نرم افزار SPSS بهره برده شد.نتایج و بحث: نتایج نشان داد مدل عمومی ارائه شده به طور کلی به لحاظ آماری معنی دار است و مقادیر واریانس توجیه شده با مدل تصادفی نیست اما رابطه متغیرهای مستقل با متغیر وابسته، هم در بعد فضایی و هم در بعد داده ها، ناایستاست. همچنین مشخص شد توزیع باقی مانده ها تاحدی از توزیع نرمال انحراف نشان می دهد که چه بسا به دلیل وجود ناایستایی در مدل باشد. بنابراین تکنیک رگرسیون وزن دار جغرافیایی برای مدل سازی به کار گرفته شد. به منظور اجرای آن و افزایش تغییرپذیری فضایی برای رفع مشکل هم راستایی خطی (به دلیل وجود الگوی خوشه ای در متغیرهای هواشناسی)، روش تحلیل مؤلفه های اصلی استفاده شد و عوامل هواشناسی به یک فاکتور کاهش یافت. این عامل نزدیک به 70٪ تغییرات این متغیرها را توجیه می کند. کاهش عوامل متغیرهای میانگین سن و نسبت جمعیت بالای 55 سال نیز به یک عامل باعث بهبود نتایج شد. بنابراین تراکم جمعیت، عامل هواشناسی و عامل سن به منزله متغیرهای پیش بینی کننده در مدل سازی با تکنیک GWR درنظر گرفته شدند. افزایش 10درصدی ضریب تعیین تعدیل شده مدل وزن دار جغرافیایی (63٪) نشان از بهبود نسبی نتایج این مدل درقیاس با مدل عمومی دارد. نتایج آزمون خودهمبستگی فضایی موران نشان داد، با اینکه از شدت الگوی خوشه ای باقی مانده ها در این مدل درمقایسه با مدل OLS کاسته شده است، همچنان در سطح اطمینان 99٪ معنی دار است. تحلیل نقاط داغ در سطح اطمینان 95٪ نشان داد بخش های غربی استان کردستان، بخش های شمالی و غربی استان خوزستان نقاط داغ (الگوی خوشه ای کم برآورد معنی دار) و بخش های شرقی استان همدان و بخش های شمالی استان بوشهر نقاط سرد (الگوی خوشه ای بیش برآورد معنی دار) هستند. بنابراین دست کم یک متغیر تأثیرگذار در بروز این بیماری درنظر گرفته نشده است. با توجه به اینکه متغیرهای احتمالی درنظر گرفته نشده همچون عوامل فرهنگی، بهداشتی و ژنتیکی دردسترس نبوده اند و یا ممکن است اندازه گیری آنها سخت بوده باشد، از بررسی آنها صرف نظر شد.نتیجه گیری: نتایج این مطالعه اهمیت و میزان تأثیر عوامل جمعیت شناختی و محیطی را در میزان ابتلا به بیماری کووید 19 روشن کرده است و می تواند برای ادامه مطالعاتی در این زمینه راه گشا باشد.
۵.

ارزیابی تأثیر خشکسالی در پوشش گیاهی ایران با استفاده از تصاویر ماهواره ای و داده های هواشناسی(مقاله علمی وزارت علوم)

کلیدواژه‌ها: شاخص های خشکسالی سنجش از دوری شاخص استاندارد بارش ایران

حوزه های تخصصی:
تعداد بازدید : ۶۴ تعداد دانلود : ۳۲
مقدمه: شرایط خشکسالی ممکن است، از متوسط تا شدید و با مدت زمان متفاوت، متغیر باشد؛ این تغییرات به نظارت مداوم و عملیاتی نیاز دارد. هرچه خشکسالی بیشتر طول بکشد، در پوشش گیاهی و منابع آبی تأثیر بیشتری می گذارد و خشکسالی تشدید می شود؛ درنتیجه، ممکن است خدمات به انسان ها را محدود کند و سیستم های طبیعی را تغییر دهد. از جمله تأثیرات خشکسالی، تخریب زیستگاه حیات وحش، کاهش کیفیت آب و کاهش دسترسی به منابع آب است. پایش خشکسالی برای محققان، مدیران و تصمیم گیرندگان، به منظور شناسایی مناطق آسیب پذیر، ضروری است و نتایج آن با هدف کاهش پیامدهای خشکسالی به کار می رود.مواد و روش ها: در این مطالعه تلاش شده است، با استفاده از تصاویر مادون قرمز سنجنده Suomi NPP دریافتی از سایتearth data.nasa.gov و بهره گیری از شاخص هایNDVI ، VCI،  TCIو  VHIوضعیت خشکسالی پوشش گیاهی در ایران بررسی شود. دوره مورد مطالعه 2021-2013، اول آوریل تا انتهای جولای (هفته 13 تا 26 میلادی)، به صورت میانگین هفتگی است. میانگین ماهیانه شاخص استاندارد بارش (SPI) در ایران با استفاده از داده های بارش روزانه 143 ایستگاه سینوپتیک به دست آمد. سپس ضریب همبستگی (SPI) با هریک از شاخص های VHI، TCI، VCI و NDVI محاسبه شد. در تصاویر مادون قرمز، باندهای M دارای قدرت تفکیک 750 و باندهای I برابر با 375 متر است.نتایج و بحث: براساس داده های بارش ثبت شده در ایستگاه های هواشناسی سینوپتیک، می توان گفت که عمده بارش در فصل های پاییز، زمستان و بهار رخ داده و سهم تابستان در بارش سالانه اندک می باشد. بنابراین سال آبی، در بیشتر مناطق ایران، به طور تقریبی از دهه سوم سپتامبر شروع و تا دهه دوم و سوم ژوئن هر سال ادامه دارد. در منطقه مورد مطالعه، بهترین پایه زمانی برای پایش و برآورد آن از اول آوریل تا اواخر ژوئن  است. در فصل تابستان، ایران یک فصل خشک را می گذراند و ماه اوت خشک ترین ماه سال است. تغییرات زمانی و مکانی خشکسالی هریک از شاخص های پوشش گیاهی با یکدیگر تفاوت زیادی دارد.نتیجه: میزان هریک از شاخص ها در شرایطی که پوشش گیاهی در وضعیت خشکسالی قرار دارد کاهش یافته و در طبقه خشکسالی خفیف و سپس شدید قرار می گیرد. بدین ترتیب، طی سال هایی که خشکسالی رخ داده است، مقدار شاخص ها از ماه آوریل روند نزولی دارد و در ژوئن و جولای، شاخص ها به سمت خشکسالی شدید میل پیدا می کند. براساس محاسبات، مشخص شد که مقدار شاخص استاندارد بارش در پهنه مورد مطالعه، طی ماه های گرم سال منفی است. این نکته بیانگر پایین بودن میزان بارش دریافتی درقیاس با دیگر ماه های سال است. 
۶.

ارزیابی روش های آمار کلاسیک در تخمین و بازسازی دمای روزانه کشور ایران(مقاله علمی وزارت علوم)

کلیدواژه‌ها: انقطاع آماری دمای روزانه مختصات جغرافیایی نسبت نرمال

حوزه های تخصصی:
تعداد بازدید : ۴۸ تعداد دانلود : ۳۹
سابقه و هدف: تصمیم گیری و مدیریت مؤثر درزَمینه توسعه پایدار منابع طبیعی نیازمند دسترسی به اطلاعات دقیق و به روز اقلیمی است. این اطلاعات امکان بررسی نقش تغییرات اقلیمی را در موضوعات گوناگون مهیا می کنند و براساس آن، می توان راهکار های مدیریتی مؤثری را تدوین کرد. در این راستا، پارامتر دما یکی از مهم ترین شاخص های اقلیمی است که نقش محوری را در تحلیل ها و پژوهش های محیطی ایفا می کند. با توجه به نقش اساسی دما در موضوعات گوناگون، دسترسی به داده های دمایی دقیق و جامع اهمیت بسیاری دارد. این داده ها باید به گونه ای باشند که بتوانند تصویری واضح و کامل از الگوهای دمایی، در طول زمان، ارائه دهند. اما متأسفانه، داده های اقلیمی اغلب با مشکلاتی مانند انقطاع آماری و خطاهای اندازه گیری مواجه اند. این مشکلات ممکن است به تصمیم گیری های نادرست و برنامه ریزی های ناکارآمد منجر شوند. در این پژوهش، با استفاده از روش های آماری، سعی شده است داده های دمایی موجود و انقطاع های آماری آنها با استفاده از روش هایی ازجمله مختصات جغرافیایی (گرافیکی)، نسبت نرمال، ضریب همبستگی وزنی و میانگین حسابی که در تکمیل داده های اقلیمی شناخته شده و پرکاربردند، تحلیل و ارزیابی شود. انتخاب روش مناسب از میان این روش ها می تواند دقت تخمین داده های دمایی را افزایش دهد و در تصمیم گیری های مبتنی بر داده های جامع تر و معتبرتر، نقش اساسی داشته باشد. درنَهایت، هدف از این پژوهش معرفی بهترین روش برای تخمین اطلاعات و رفع انقطاع آماری است که پژوهشگران، مدیران و سیاست گذاران را درزَمینه توسعه پایدار و درک بهتر شرایط اقلیمی و اتخاذ تصمیماتی هوشمندانه تر و مؤثرتر، یاری خواهد کرد.مواد و روش ها: در این پژوهش، به منظور رفع خلأ آماری، روش های شناخته شده و محبوب آمار کلاسیک شامل روش مختصات جغرافیایی، نسبت نرمال، ضریب همبستگی وزنی و میانگین حسابی، در تخمین داده های دمایی کشور ارزیابی شد. به منظور بررسی بهترین روش برای تکمیل اطلاعات مفقودی، از اطلاعات 125 ایستگاه استفاده شد. این ایستگاه ها دارای اطلاعات کامل (بدون هیچ گونه مفقودی)، درطول 21 سال (2020-2000 م.) بودند. ازآنجاکه محاسبات گسترده و زمان بر بودند، با انتخاب 10٪ این ایستگاه ها به صورت تصادفی با پراکندگی مکانی مناسب، عملیات پرکردن اطلاعات روی ایستگاه های منتخب انجام شد. اطلاعات ایستگاه های منتخب، در هر مرحله و به صورت جداگانه، حذف و براساس پنج ایستگاه مجاور خود، بازسازی شدند و به منظور ارزیابی روش های مذکور، از معیار های ارزیابی آماری ضریب تبیین (R2)، جذر میانگین مربعات خطا (RMSE) و میانگین انحراف مطلق (MAD) استفاده شد.نتایج و بحث: با ارزیابی نتایج حاصل از بررسی مقادیر محاسباتی ازطریق روش نسبت نرمال درمقابل مقادیر مشاهداتی، مشخص شد تمامی ایستگاه های مورد بررسی همبستگی بالایی دارند؛ این نکته بیانگر مقبولیت روش نسبت نرمال برای تخمین داده هاست. با توجه به مقادیر متوسط حاصل از ارزیابی نتایج، روش نسبت نرمال، ضریب همبستگی وزنی، مختصات جغرافیایی و میانگین حسابی به ترتیب، با مقدار RMSE معادل 05/3، 28/3، 30/3 و 51/3 درجه سلسیوس، اولویت بندی می شوند. بنابراین روش نسبت نرمال در میان سایر روش های مورد مطالعه از مقبولیت بیشتری برخوردار است و ازاین رو، در رفع مشکلاتی اعم از فقدان اطلاعات، خطای موجود در داده ها و همچنین گسترش دوره زمانی مطالعاتی، می توان از آن بهره برد.نتیجه گیری: در میان روش های مورد بررسی، روش نسبت نرمال به صورت کلی مقبولیت و کیفیتی بیشتر از دیگر روش ها دارد که توصیه می شود در پژوهش های آتی، در محدوده مطالعاتی مشابه، از این روش استفاده شود. در مراتب بعدی، به ترتیب روش مختصات جغرافیایی، همبستگی وزنی و میانگین حسابی قرار دارند. شایان توجه است، با اینکه سایر روش ها در مراتب اهمیت بعدی واقع شده اند، همچنان در برخی ایستگاه ها کارآیی مناسبی نشان می دهند؛ بنابراین در شرایط متفاوت، روش های متنوعی می تواند نیاز به ترمیم داده ها را رفع کند و با توجه به محدوده مورد مطالعه، باید بهترین روش انتخاب شود و به کار رود.
۷.

تغییرات کاربری اراضی مبتنی بر تصاویر ماهواره ای در جلگه هراز(مقاله علمی وزارت علوم)

کلیدواژه‌ها: سنجش از دور صحتسنجی ضریب کاپا استان مازندران

حوزه های تخصصی:
تعداد بازدید : ۷۸ تعداد دانلود : ۶۴
سابقه و هدف: یکی از مهم ترین قدم ها به سمت توسعه پایدار حفاظت از تمامیت اراضی است؛ به طوری که سالیانه بخشی از اراضی، به دلایل متعدد، تغییر کاربری می یابند و خروج این گونه اراضی از مسیر تولید لطمات جبران ناپذیری درپِی دارد. ازآنجاکه شدت تغییر کاربری اراضی در استان مازندران، ازجمله جلگه هراز، به منزله یکی از مهم ترین مسائل زیست محیطی، در مقیاس های کلان زمانی و مکانی رخ می دهد، بارزسازی و پایش تغییرات کاربری به منظور شناخت اولیه و ارزیابی روند تغییرات آنها می تواند روشی مفید برای مدیریت و برنامه ریزی به شمار رود. با توجه به اینکه جلگه هراز، در دهه های اخیر، از بحران تغییرات مخرب کاربری اراضی در امان نبوده است، لزوم پایش، بارزسازی و روندیابی این تغییرات یکی از مهم ترین فاکتورهای مدیریتی در این منطقه محسوب می شود.مواد و روش ها: بررسی تغییرات کاربری اراضی نیازمند تلفیق لایه ها در بازه زمانی معین است. هدف این پژوهش بررسی تغییر کاربری های اراضی جلگه هراز از 1980 تا 2021 است. بر این اساس، برای سنجش تغییرات، از داده های لندست استفاده شد. با اعمال تصحیحات اتمسفری، هندسی و رادیومتری، عملیات بارزسازی تصاویر اجرا و با بهره گیری از روش طبقه بندی نظارت شده، الگوریتم حداکثر احتمال و اعمال توابع تحلیل مؤلفه مبنا، نقشه ها تولید شدند. نوع تغییرات کاربری از تابع تفاضل تصاویر شناسایی و صحت نقشه ها، با استفاده از آزمون صحت کلی و آماره کاپا، تعیین شد. نتایج و بحث: نتایج نشان داد، از 1980 تا 1990، چهار کیلومترمربع از مساحت اراضی جنگلی کاسته شد و مساحت مراتع نیز از 450 به 436 کیلومترمربع کاهش یافت. از سال 2000 تا 2010، مساحت اراضی جنگلی از 272 به 270 کیلومترمربع و مراتع نیز از 432 به 420 کیلومترمربع رسیده است. درنَهایت، طی سال های 2011 تا 2021، از مساحت اراضی جنگلی نُه کیلومترمربع و مرتع نیز پنج کیلومترمربع کاسته شده است. نتایج بررسی روند تغییرات کاربری های اراضی منطقه حاکی از آن است که مساحت اراضی جنگلی و مرتعی کاهش یافته و به مساحت اراضی کشاورزی و مناطق مسکونی افزوده شده است.نتیجه گیری: با توجه به نتایج به دست آمده و اهداف تعریف شده، می توان اذعان کرد کاربری های منطقه، طی دوره آماری درنظر گرفته شده (2021-1980)، با تغییرات مساحت روبه رو بودند و تغییر محسوسی را نیز نشان دادند. بنابراین دخالت های عوامل انسانی نقش اصلی را در تغییرات کاربری اراضی دارد. این نتایج می تواند به برنامه ریزان، در شناخت عوامل مؤثر در تغییر کاربری و اتخاذ تصمیمات صحیح مدیریتی در سطوح گوناگون، کمک کند.
۸.

پایش تغییرات پوشش زمین در شمال غرب ایران با استفاده از روش انتقال نمونه های آموزشی(مقاله علمی وزارت علوم)

کلیدواژه‌ها: انتقال نمونه آموزشی پوشش زمین شباهت طیفی طبقه بندی لندست

حوزه های تخصصی:
تعداد بازدید : ۶۳ تعداد دانلود : ۴۱
سابقه و هدف: نقشه پوشش زمین یکی از پارامترهای اساسی در تحلیل های جغرافیایی و برنامه ریزی های مکانی محسوب می شود. به طور کلی، تصویر ماهواره ای، الگوریتم طبقه بندی و نمونه آموزشی سه پارامتر اصلی در تهیه نقشه های پوشش زمین به شمار می روند و مهم ترین نقش را درزَمینه صحت، هزینه و منابع محاسباتی مورد نیاز برای تهیه این نقشه ها ایفا می کنند. کیفیت نمونه آموزشی تأثیر شایان توجهی در صحت نتایج طبقه بندی دارد. بر این اساس، هدف اصلی این پژوهش تهیه نمونه های آموزشی معتبر، با استفاده از روش انتقال نمونه های آموزشی برای پایش تغییرات پوشش زمین در شمال غرب ایران، بین سال های 2002 تا 2022 است.مواد و روش ها: منطقه مورد مطالعه، با مساحتی بالغ بر 7653 کیلومترمربع، در شمال غرب ایران واقع شده است. ازلحاظ جغرافیایی، این محدوده در مختصات 35 59 °44 تا 25 01 °46 طول شرقی و 46 02 °38 تا 47 48 °38 عرض شمالی قرار دارد. داده های مورد استفاده در این پژوهش شامل تصاویر ماهواره ای و داده های مرجع زمینی است و تصاویر به کاررفته در این پژوهش شامل تصاویر ماهواره ای سری لندست می شود. روش پژوهش پنج مرحله کلی را دربرمی گیرد. در مرحله اول، تصاویر ماهواره ای لندست از سایت سازمان زمین شناسی امریکا دریافت و مراحل پیش پردازش تصاویر (تصحیح رادیومتریک و هندسی) روی آنها انجام شد. در مرحله دوم، با استفاده از تصاویر دارای قدرت تفکیک مکانی بالا (تصاویر سامانه Google Earth) و برداشت زمینی، نمونه های آموزشی مورد نظر تهیه شدند. مرحله سوم شامل انتقال نمونه های آموزشی است. برای این کار، در ابتدا، با استفاده از دو پارامتر فاصله اقلیدسی (ED) و فاصله زاویه طیفی (SAD)، شباهت طیفی نمونه های آموزشی در سال های مرجع و هدف بررسی شد. در ادامه، با تعیین آستانه مورد نظر، نمونه های آموزشی انتقال یافته از نمونه های انتقال نیافته تفکیک شدند. در انتهای مرحله سوم، صحت نمونه های آموزشی انتقال یافته ارزیابی شد؛ بدین منظور داده های مرجع تهیه شده از سامانه Google Earth به کار رفت. در مرحله چهارم، با استفاده از نمونه های آموزشی انتقال یافته، تصاویر ماهواره ای در سال های گوناگون طبقه بندی شد و درنَهایت در مرحله پنجم، با به کارگیری شاخص های حاصل از ماتریس خطا، صحت تصاویر طبقه بندی شده ارزیابی شد.نتایج و بحث: نتایج به دست آمده نشان داد آستانه 9/0 تا 1/1 مناسب ترین آستانه برای تفکیک نمونه های آموزشی انتقال یافته از نمونه های آموزشی انتقال نیافته در سال های گوناگون است. بر این اساس، می توان گفت بین صحت و درصد نمونه های آموزشی انتقال یافته رابطه ای معکوس وجود دارد و با افزایش درصد نمونه های آموزشی انتقال یافته، از صحت آنها کاسته می شود. بررسی صحت نمونه های آموزشی انتقال یافته، براساس هریک از پارامترها (فاصله زاویه طیفی و فاصله اقلیدسی)، نشان داد صحت نمونه های آموزشی انتقال یافته براساس پارامتر فاصله زاویه طیفی بیشتر از نمونه های آموزشی انتقال یافته براساس پارامتر فاصله اقلیدسی است. همچنین استفاده از نمونه های انتقال یافته، براساس هر دو پارامتر، باعث افزایش 45/10درصدی صحت درمقایسه با حالتی شده است که از پارامتر فاصله اقلیدسی برای انتقال نمونه های آموزشی استفاده شده و نیز افزایش 5درصدی صحت را درقیاس با وضعیتی دربرداشته که از پارامتر فاصله زاویه طیفی برای انتقال نمونه های آموزشی استفاده شده است. بررسی درصد انتقال نمونه های آموزشی در کلاس های کاربری گوناگون نشان داد، به طور میانگین، 6/80٪ از نمونه های آموزشی کلاس آب، 4/75٪ از نمونه های آموزشی کلاس اراضی بایر، 2/71٪ نمونه های آموزشی کلاس اراضی انسان ساخت، 6/64٪ نمونه های آموزشی کلاس مرتع، 2/60٪ از نمونه های آموزشی کلاس اراضی زراعی و 4/54٪ نمونه های آموزشی کلاس تالاب از سال مرجع (1401) به هریک از سال های هدف (1381، 1387، 1392 و 1396) انتقال پیدا کرده اند. همچنین ارزیابی صحت نمونه های آموزشی انتقال یافته در کلاس های کاربری گوناگون نشان داد کلاس های آب، اراضی انسان ساخت، اراضی بایر، مرتع، اراضی زراعی و تالاب، به ترتیب، بیشترین صحت را در نمونه های آموزشی انتقال یافته دارا بودند. بررسی تغییرات پوشش زمین بین سال های 1381 تا 1401 نشان داد روند تغییرات مساحت کلاس های اراضی بایر، آب و تالاب از سال 1381 تا 1401 کاهشی و روند تغییرات مساحت اراضی انسان ساخت، در این بازه زمانی، افزایشی بوده است؛ همچنین کلاس های مرتع و اراضی زراعی، در این بازه زمانی، دارای روند تغییرات ثابت نبوده و روند تغییرات آنها در سال های گوناگون، متفاوت بوده است. اما درحالت کلی، مساحت این دو کلاس طی سال 1401، درقیاس با سال 1381 افزایش یافته است.نتیجه گیری: پیشنهاد می شود در مطالعات آتی، از سایر تصاویر ماهواره ای (ازجمله تصاویر ماهواره ای سنتینل 2) نیز به منظور انتقال نمونه های آموزشی استفاده شود تا تأثیر باندهای طیفی و تصاویر ماهواره ای گوناگون، در انتقال نمونه های آموزشی، ارزیابی شود. همچنین بررسی اثربخشی روش انتقال نمونه های آموزشی در انتقال نمونه های آموزشی سایر پوشش های زمینی می تواند درزمره موضوعات پژوهشی در مطالعات بعدی قرار گیرد.منطقه مورد مطالعه با مساحتی بالغ بر 7653 کیلومترمربع در شمال غرب ایران واقع شده است. از لحاظ جغرافیایی محدوده مورد نظر در مختصات ´´35 ´59 °44 تا ´´25 ´01 °46 طول شرقی و ´´46 ´02 °38 تا ´´47 ´48 °38 عرض شمالی واقع شده است. داده های مورد استفاده در این پژوهش شامل تصاویر ماهواره ای و داده های مرجع زمینی می باشد. تصاویر مورد استفاده در این پژوهش شامل تصاویر ماهواره ای سری لندست می باشد.روش انجام پژوهش شامل پنج مرحله کلی می باشد. در مرحله اول تصاویر ماهواره ای لندست 5 و 8 از سایت سازمان زمین شاسی آمریکا اخذ شده و مراحل پیش پردازش تصاویر (تصحیح رادیومتریک و هندسی) بر روی آن ها انجام شد. در مرحله دوم با استفاده از تصاویر با قدرت تفکیک مکانی بالا (تصاویر سامانه Google Earth) و برداشت زمینی، نمونه های آموزشی مورد نظر تهیه شدند. مرحله سوم شامل انتقال نمونه های آموزشی می باشد. برای این کار در ابتدا بررسی شباهت طیفی نمونه های آموزشی در سال های مرجع و هدف با استفاده از دو پارامتر فاصله اقلیدسی و فاصله زاویه طیفی انجام شد. در ادامه با تعیین آستانه مورد نظر، نمونه های آموزشی انتقال یافته از نمونه های انتقال نیافته تفکیک شدند. در انتهای مرحله سوم، ارزیابی صحت نمونه های آموزشی انتقال یافته انجام شد، برای این کار از داده های مرجع تهیه شده از سامانه Google Earth استفاده شد. در مرحله چهارم با استفاده از نمونه های آموزشی انتقال یافته، طبقه بندی تصاویر ماهواره ای در سال های مختلف انجام شد و در نهایت در مرحله پنجم با استفاده از شاخص های حاصل از ماتریس خطا، ارزیابی صحت تصاویر طبقه بندی شده انجام شد.نتایج به دست آمده نشان داد، آستانه 0/9 تا 1/1 (اختلاف انحراف معیار از میانگین) مناسب ترین آستانه برای تفکیک نمونه های آموزشی انتقال یافته از نمونه های آموزشی انتقال نیافته در سال های مختلف می باشد. بر این اساس می توان گفت یک رابطه معکوس بین صحت نمونه های آموزشی انتقال یافته و درصد نمونه های آموزشی انتقال یافته وجود دارد و با افزایش درصد نمونه های آموزشی انتقال یافته از صحت آن ها کاسته می شود.بررسی صحت نمونه های آموزشی انتقال یافته بر اساس هر یک از پارامترها (فاصله زاویه طیفی و فاصله اقلیدسی) نشان داد نمونه های آموزشی انتقال یافته بر اساس پارامتر فاصله زاویه طیفی از صحت بیشتری نسبت به نمونه های آموزشی انتقال یافته بر اساس پارامتر فاصله اقلیدسی برخوردار می باشند. همچنین استفاده از نمونه های انتقال یافته بر اساس هر دو پارامتر باعث افزایش 10/45 درصدی صحت نسبت به حالتی شده است که از پارامتر فاصله اقلیدسی برای انتقال نمونه های آموزشی استفاده شده است و افزایش 5 درصدی صحت نسبت به حالتی شده است که از پارامتر فاصله زاویه طیفی برای انتقال نمونه های آموزشی استفاده شده است.بررسی درصد انتقال نمونه های آموزشی در کلاس های کاربری مختلف نشان داد به طور میانگین 80/6 درصد از نمونه های آموزشی کلاس آب، 75/4 درصد از نمونه های آموزشی کلاس اراضی بایر، 71/2 درصد از نمونه های آموزشی کلاس اراضی انسان ساخت، 64/6 درصد از نمونه های آموزشی کلاس مرتع، 60/2 درصد از نمونه های آموزشی کلاس اراضی زراعی و 54/4 درصد از نمونه های آموزشی کلاس تالاب از سال مرجع (1401) به هر یک از سال های هدف (1381، 1387، 1392 و 1396) انتقال پیدا کرده اند. همچنین ارزیابی صحت نمونه های آموزشی انتقال یافته در کلاس های کاربری مختلف نشان داد کلاس های آب، اراضی انسان ساخت، اراضی بایر، مرتع، اراضی زراعی و تالاب، به ترتیب از بیشترین صحت در نمونه های آموزشی انتقال یافته برخوردار بودند.طبقه بندی تصاویر ماهواره ای با استفاده از تصاویر لندست بین سال های 1381 تا 1401 انجام شد. بر این اساس، پوشش های سطحی زمین در شش کلاس کاربری مختلف طبقه بندی شد. نتایج ارزیابی صحت طبقه بندی نشان داد صحت کلی تصاویر طبقه بندی شده در سال های 1401، 1396، 1392، 1387 و 1381 به ترتیب 94/95، 91/93، 90/74، 89/45 و 88/94 درصد است. بررسی صحت طبقه بندی کلاس های کاربری مختلف بر اساس دو پارامتر صحت تولیدکننده و صحت کاربر نشان داد، کلاس آب از بیشترین صحت تولید کننده و کاربر در میان کلاس های مختلف برخوردار است، به طوری که صحت تولیدکننده و کاربر آن در تصویر طبقه بندی شده سال 1401 به ترتیب 98/2 و 99/34 درصد می باشد. از طرفی کمترین صحت تولیدکننده و کاربر در کلاس تالاب به دست آمد؛ به طوری که، صحت تولیدکننده و کاربر آن در تصویر طبقه بندی شده سال 1401 به ترتیب 90/1 و 91/25 درصد است.بررسی تغییرات پوشش زمین بین سال های 1381 تا 1401 نشان داد، روند تغییرات مساحت کلاس های اراضی بایر، آب و تالاب از سال 1381 تا 1401 کاهشی و روند تغییرات مساحت اراضی انسان ساخت در این بازه زمانی افزایشی بوده است، همچنین کلاس های مرتع و اراضی زراعی دارای روند تغییرات ثابت در این بازه زمانی نبوده و روند تغییرات آن ها در سال های مختلف متفاوت بوده است. اما در حالت کلی مساحت این دو کلاس در سال 1401 نسبت به سال 1381 افزایش یافته است. بررسی تغییرات مساحت اراضی انسان ساخت در این بازه زمانی نشان دهنده افزایش محسوس مساحت این کلاس کاربری می باشد؛ به طوری که مساحت آن از 20/38 کیلومتر مربع در سال 1381 به 123/98 کیلومتر مربع در سال 1401 افزایش یافته است.پیشنهاد می شود در مطالعات آتی از سایر تصاویر ماهواره ای (از جمله تصاویر ماهواره ای سنتینل-2) نیز به منظور انتقال نمونه های آموزشی استفاده شود تا تأثیر باندهای طیفی و تصاویر ماهواره ای مختلف در انتقال نمونه های آموزشی مورد ارزیابی قرار گیرد. همچنین بررسی اثربخشی روش انتقال نمونه های آموزشی در انتقال نمونه های آموزشی سایر پوشش های زمینی می تواند از جمله موضوعات پژوهشی در مطالعات بعدی محسوب شود.

آرشیو

آرشیو شماره ها:
۶۲