پیش بینی پویای قیمت نفت خام با استفاده از شبکه های عصبی مصنوعی و با به کارگیری ذخیره سازی های نفتی کشورهای OECD(مقاله علمی وزارت علوم)
حوزه های تخصصی:
نفت بهعنوان بزرگترین منبع تامین انرژی در جهان و بهدلیل نقش آن در اقتصاد کشورهای تولید کننده، حائز اهمیت بسیار است. لذا شناخت پارامترهای مختلف تاثیرگذار بر بازار نفت برای این کشورها، ضروری به نظر می رسد. در این راستا، این تحقیق به پیش بینی قیمت بهعنوان یک متغیر مهم از بازار جهانی نفت، با استفاده از روش شبکه های عصبی مصنوعی و نیز روش اقتصادسنجی ARIMA می پردازد. لازم به ذکر است که این پیشبینیها بهصورت پویا انجام شده اند. از یک سو نتایج پیش بینی های یک گام به جلو تا ده گام به جلو با استفاده از روش شبکه های عصبی در مقایسه با روش ARIMA، حاکی از خطای کمتر روش شبکه های عصبی است و از سوی دیگر نتایج پیش بینی های شبکههای عصبی نشان می دهد که با اضافه کردن ذخیره سازی های کشورهای OECD بهعنوان یک ورودی دیگر در مدل و انجام یک پیش بینی دو متغیره (برای اولین بار در ایران)، خطای پیش بینی های قیمت نفت کاهش مییابد.