آرشیو

آرشیو شماره‌ها:
۶۵

چکیده

تداوم مخاطرات طبیعی و آسیب پذیری نواحی روستایی موجب شده تا این مخاطرات به بحران هایی بدل گردند که هرساله خسارات فراوانی را برجای می گذارند، با توجه به اینکه وضعیت مدیریت بحران، نقش بسزایی در کنترل و تبدیل مخاطرات طبیعی دارد، در این راستا نیاز است که وضعیت نواحی روستایی مورد مداقه و تحلیل قرار گیرد. لذا ارائه مدلی متناسب در پایش و مدیریت بحران به حل مشکلات عدیده در زمینه بلاهای طبیعی می تواند کمک کند. مناطق روستایی استان اصفهان دارای روستاهای بسیار زیادی می باشد که نبود قوانین و برنامه ای متناسب در زمینه کنترل و مدیریت مخاطرات طبیعی، منابع زیادی را نابود خواهد کرد که این امر بررسی و تحلیل مؤلفه های مؤثر در مدیریت ریسک و تبیین الگوی برنامه ریزی متناسب آن را طلب می کند. لذا هدف از این مطالعه تحلیل مؤلفه های مؤثر در مدیریت بحران نواحی روستایی استان اصفهان می باشد. روش تحقیق توصیفی- تحلیلی است و جهت گردآوری داده ها از مطالعات میدانی استفاده شده است. ابزار مورداستفاده برای جمع آوری اطلاعات پرسشنامه بود که با توجه به مرور زمینه تحقیق و انجام مصاحبه های فردی با کارشناسان اداره کل مدیریت بحران منطقه طراحی گردید. جامعه آماری این تحقیق شامل 22 نفر از مدیران مرتبط هستند که در حوزه مدیریت بحران فعالیت داشتند. برای تجزیه وتحلیل داده ها از معادلات ساختاری استفاده شده است. نتایج به دست آمده حاکی از آن است که شاخص برنامه ریزی (30/0)، آموزش و ترویج (18/0)، قوانین و مقررات (66/0)، اطلاع رسانی (46/0) و عامل زیربنایی (22/0) از بارهای عاملی را تبیین می نماید. دیدگاه ساختاری و جامع، جهت شناخت عوامل مؤثر بر وضعیت مدیریت بحران نواحی روستایی وجه تمایز این پژوهش با سایر پژوهش ها می باشد.

Analysis of effective components in crisis management in rural areas from the perspective of experts

Introduction  the lack of an appropriate model in crisis monitoring and management has added to many problems in this area. The province isfahan has lost a lot of resources due to the lack of integrated management and planning, infrastructure and structural problems, cumbersome laws and regulations in the field of control and management of crises caused by natural hazards, which leads to a comprehensive approach to management. And requires monitoring of land, water, soil, manpower, and the evaluation and explanation of the appropriate planning model. Given the recent situation in Isfahan province and the increasing trend of unprecedented natural and unnatural disasters in this province, as well as unstable villages, having a general analysis of various indicators of the crisis is now considered an undeniable necessity. For this reason, it is important to study the effective components in crisis management and provide a model appropriate to the conditions of rural areas of Isfahan province.   Methodology The present study was conducted by analytical-descriptive method with the aim of presenting a crisis management model in rural areas of Isfahan province. The statistical population includes 22 experts of the General Directorate of Crisis Management of Isfahan Province. The tool used to collect information was a questionnaire that was designed with regard to reviewing the research field and conducting individual interviews with experts of the General Directorate of Crisis Management. It has two parts. The first part was related to the respondents' personal characteristics including gender, age, level of education, occupation, number of households and income. The second part was questions related to natural hazard management and was used in the form of a five-level Likert scale (very low = 1 to very high = 5). The face and content validity of the questionnaire was confirmed with the corrective opinion of university professors and experts and after making the necessary corrections in several stages. In the present study, Cronbach's alpha method was used to assess the validity of the measuring instrument.   Results and discussion The strength of the relationship between the factor (hidden variable) and the observable variable is indicated by the factor load. The factor load is a value between zero and one. If the factor load is less than 0.3, a weak relationship is considered and ignored. A factor load of between 0.3 and 0.6 is acceptable, and if greater than 0.6 it is highly desirable. It can be seen that all the observed variables had positive and significant regression effect coefficients with their scales and the magnitude of these coefficients is relatively high for all cases, of all factor loads at the level of / 001. They are meaningful. As can be seen, in this table no significant level is reported for the factor loads or the standard regression coefficients of the five observed variables. This is because these variables are considered as reference variables for planning, education and promotion, rules and regulations, information and infrastructure, respectively, so that these variables are hidden without scale, in other words. That is why the initial path diagrams on the arrows corresponding to the paths between these observed variables are considered to be the hidden variable corresponding to the values of 1, the AVE criterion showing the mean variance to it is shared between each structure with its own characteristics. Simply put, AVE (average variance extracted) is used to validate convergence and shows a high correlation between the indices of one structure compared to the correlation of indices of other structures. The value of this coefficient is from zero to one variable that values higher than 0.5 are accepted. Convergent validity or extracted mean variance (AVE) for the planning index / 766., Education and Extension Index was 0.711, Rules and Regulations Index was 0.799, Information Index was 0.526 and Infrastructure Index was 0.626. Also, the value of structural reliability coefficient or combined reliability (CR) varies from zero to one. Values above 0.7 are accepted, which is / 755 for the planning index., Education and Extension Index was 0.737, Rules and Regulations Index was 0.802, Information Index was 0.514 and Infrastructure Index was 0.526, which indicates the appropriateness of these subscales. All path coefficients show high values, the intensity of which was observed in relation to the factor loads of the variables. These are: planning (0.30), education and extension (0.18), rules and regulations (0.66), information (0.46) and infrastructure (0.22).   Conclusion Findings showed that the first factor, called "planning", is the result of the thinking of individuals and the participation of that community. Therefore, it is necessary to look at them in accordance with the environmental conditions and the potentials and capabilities of the region. Therefore, this factor is one of the important factors for crisis managers that requires careful attention and strategic and practical thinking. This factor can be compared with the research findings and which in the research believe that crisis management requires planning of all stakeholders in society. The second factor, referred to as "education and promotion", showed that this factor, according to personal needs and changing sciences and special circumstances, will provide the basis for reducing vulnerability, so it is necessary to Providing integrated management of education and promotion of villagers should be at the top of crisis management priorities. The third factor, called "weakness of rules and regulations", has been approved as one of the main structures in crisis management. In fact, this structure is considered as one of the most important and challenging factors in crisis management. Therefore, this factor showed that the enforcement of laws and regulations can play an important role in improving crisis management and therefore it is necessary to pay major attention to it at the national, regional and local (rural) level. This factor can also be compared with the research findings which emphasized this index in their research, and mentioned it as the basis for improving rangeland management. The fourth factor, called "information", can help manage crisis through the use of knowledge and up-to-date information. This factor can be compared with research findings and they believe that receiving knowledge and information, especially indigenous knowledge from various sources is effective. Also, the role of formal and non-formal education should not be overlooked. The fifth factor, called the "infrastructure factor", indicates that structural facilities can provide the basis for better management. This factor can be reconciled with the research findings. He states that infrastructure and structural indicators are one of the important factors in improving crisis management.   Funding There is no funding support.   Authors’ Contribution Authors contributed equally to the conceptualization and writing of the article. All of the authors approved thecontent of the manuscript and agreed on all aspects of the work declaration of competing interest none.   Conflict of Interest Authors declared no conflict of interest.   Acknowledgments  We are grateful to all the scientific consultants of this paper.

تبلیغات