علی رجب زاده قطری

علی رجب زاده قطری

رتبه علمی: استاد گروه مدیریت صنعتی، دانشگاه تربیت مدرس

مطالب

فیلتر های جستجو: فیلتری انتخاب نشده است.
نمایش ۸۱ تا ۸۳ مورد از کل ۸۳ مورد.
۸۱.

طراحی مدل پیش‌بینی ترکیبی در صنعت نفت (مدل سیستم های خبره تصمیم‌ گیرنده)(مقاله علمی وزارت علوم)

کلید واژه ها: ایران پیش بینی ترکیبی سریهای زمانی شبکه های عصبی مصنوعی رگرسیون چند متغیره سیستم های خبره صنعت نفت

حوزه های تخصصی:
تعداد بازدید : ۲۶۶۱
پیش بینی های مختلف مسایل اقتصادی متکی به روش های اقتصادسنجی می باشد و توان بالای این مدل ها در برآورد معادلات خاص منجر به استفاده وسیع از این مدل ها شده است. از حدود دو دهه قبل روش های ترکیبی در پیش بینی مطرح شده است و در این تحقیق، رویکرد پیش بینی ترکیبی در مدل های اقتصادی مورد بررسی و تجزیه و تحلیل قرار گرفته است. رویکرد مذکور به خاطر توان بالایی که در کاهش میزان خطای نتایج پیش بینی دارد، در مسایل مختلف مالی و اقتصادی و بازرگانی به کار گرفته شده است. در این تحقیق سعی شده است با تأکید بر آخرین دستاوردها در حوزه مسایل پیش بینی ترکیبی، با استفاده از این رویکرد تا حد امکان خطاهای پیش بینی تقاضای نفت را کاهش داد. جهت مدلسازی ترکیبی، در ابتدا با استفاده از روش های مختلف، پیش بینی انجام شده است که در این مطالعه آنها روش های فردی نامیده شده اند. مدل های پیش بینی فردی مورد استفاده شامل روش های هموارسازی نمایی، تحلیل روند، باکس جنکینز، تحلیل های علّی و مدل شبکه عصبی می باشد.
۸۲.

ارزیابی روش های پیش بینی ترکیبی : با رویکرد شبکه های عصبی - کلاسیک در حوزه اقتصاد(مقاله علمی وزارت علوم)

کلید واژه ها: شبکه های عصبی مصنوعی رگرسیون چند متغیره پیش بینى سریهای زمانى پیش بینى ترکیبی

حوزه های تخصصی:
تعداد بازدید : ۳۷۵۶ تعداد دانلود : ۲۱۵۷
در إین مقاله با استفاده از اطلاعات سرى زمانى قیمت و بازده سهام چند شرکت در بازار بورس تهران، به پیش بینى قیمت سهام و نیر ارائه مدل بهینه پرداخته مى شود. روشهاى پیش بینى مورد استفاده در تحقیق، به سه دسته تقسیم شده اند: ر و شهاى پیش بینى براساس مدلهاى خطى (کوتاه مدت و بلندمدت)، روشهاى پیش بینى براساس مدلهاى غیرخطى (شبکه هاى عصبى غیرخطى) و مدل شبکه عصبى با ساختار پیشنهادى. در هر مورد نتایج به دست آمده رسم شده اند. با استفاده از پیش پردازش هاى اشاره شده، نشان داده مى شودکه قیمت و بازده سهام (در هر 6 سهم مربوط به صنابع مختلف) از نگاشهاى پیچیده غیر خطى و آشوبگرانه به وجود آمده اند و اساسآ استفاده از انواع مختلف روشهاى خطى صحیح نمى باشد. همچنین نشان داده مى شودکه استفاده از روشهاى غیرخطى شبکه هاى عصبى به خودى خود و به شکل متعارف بهبود قابل ملاحظه اى را به دنبال ندارد. با ارائه پیشنهاد ساختار جدید، مى توان قیمت و بازده را به خوبى در دو حالت پیش بینى روز بعد و پیش بینى سى روز بعد تخمین زد.

پالایش نتایج جستجو

تعداد نتایج در یک صفحه:

درجه علمی

مجله

سال

حوزه تخصصی

زبان